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(5) Introduction:

This project was based on the hypothesis that early cellular transformation events
involved in breast cancer formation might influence the amplification of human Alu repeats.
Any increases in Alu amplification, might contribute to further destabilization of the human
genome and inactivation of tumor suppressors that could contribute to the progression of breast
cancer. At least in sporadic cases, Alu insertions have been shown to contribute to a number of
cancers, including at least one case of breast cancer due to inactivation of BRCA?2 ! We have
previously shown that only a specific set of subfamilies of Alu elements are actively amplifying
in the human genome **. This project combines this information with an anchored PCR
procedure we have developed to form displays of the most recently amplified Alu elements. We
have demonstrated that this Allele-Specific Alu PCR (ASAP) will effectively display the
members of the smallest of the recent Alu subfamilies as bands on an acrylamide gel (5). Our
goal is to generalize these procedures to the larger subfamilies and explore various procedures to
deal with the larger number of bands expected. We will then use these procedures to compare
breast cancer and normal DNA from a number of individuals to determine whether there are
new, tumor-specific Alu inserts. This will allow us to determine whether this form of genetic
instability plays a role in human breast cancer.

Because of some difficulties with initial implementation of the ASAP assay, we also
designed approaches to use an L1 retrotransposition reporter gene system (Moran) to study the
specific influences on retrotransposition of genetic changes associated with tumorigenesis, as
well as environmental influences that may contribute to breast cancer. This will allow. Because
it is thought that Alu elements utilize the same retrotransposition machinery as L1, this system
should allow an alternate assessment of the primary question of whether retroelement insertions
are likely to contribute to breast cancer genomic instability.

(6) BODY

Original Goals:

First Six Months:

e Optimization of ASAP. Our primary goal will be to optimize the Allele-Specific PCR
further. We will work to identify the very best PCR primers to allow the most effective
allele-specific amplification of the Alu inserts and flanks. This will allow us to develop a
procedure with both minimal steps and minimal background in the later experiments.

e  No patient samples will be needed at this stage.

First Year:

e Optimization of Displays. We will utilize the ASAP procedure to generate test samples
from all three relevant Alu subfamilies, which can then be utilized to improve the display
procedures, in particular the subdivision with PCR into 16 subdivisions. We will begin to
explore ways to utilize subtraction procedures on these samples.

e No patient samples will be needed at this stage

Second Year:



¢ Refinement of Subtraction Technology. Technical development will continue with
refinement of the subtraction procedures and tests of the sensitivity of detection of bands
and the ability to pool samples in the PCR reactions.

o Preliminary work on tumor samples. Work will begin with existing technology to carry
out analysis on tumor samples. We expect to have carried out analysis of the first 10-20
samples in this year. We will use this experience to determine the best approach to
generate data in a production mode. This will provide an initial feel for the level of
diversity in the displays and a basic characterization of any diversity to determine
whether it is caused by insertions. Any evidence of other forms of genomic instability
influencing the assay will be assessed at this point and procedures optimized to
compensate.

Third Year:

e Completion of Tumor Samples. During the previous year, we expect to have optimized
the ASAP procedures and their display completely. This will allow us to have
determined the most effective approach for analysis of large numbers of samples. We
will utilize this year solely to generate data on as many tumors as possible. We will focus
our efforts initially on late stage tumors, but will move progressively towards earlier
stage tumors, particularly if we detect extensive Alu amplification at late stages.

e We expect to complete 100 samples by the end of the third year. It is our hope that the
subtraction of pooled samples will increase the data flow and we can carry out
experiments on enough samples to be able to analyze subgroups based on tumor stage,
ethnic origin of tumor or other correlations with clinical features or treatment.

By the Second year it became clear that there were more technical difficulties getting
the displays fully optimized and implementable on a large number of samples and our goals had
to be scaled back to a more pilot level. In addition, last year we reported in our progress report
an alternative approach to address the critical issue of whether retrotransposition played a critical
role in breast cancer progression. The approach was to use a reporter system for L1
retrotransposition and test whether genetic alterations associated with tumorigenesis altered
retrotransposition rates.

Accomplishments of the three year period:

(This includes a summary of the first two year’s work, although without the detail
placed in those reports).

During the first two years we explored a wide range of approaches for optimizing
displays of the most recently inserted Alu inserts. Year 1 focused primarily on the PCR-based
display itself, utilizing a number of variations to both increase the resolution of the technique, as
well as ways to deal with the large numbers of elements in some of the more active subfamilies
which gave rise to too many elements to allow our assay to work. We were successful at
generating quality displays for the very smallest subfamilies of elements. We also had some
success utilize various less frequent restriction digestions to allow us to display a limited subset
of the more abundant subfamilies. Our biggest difficult at this point was to figure out how to
display the 2000 Ya5 subfamily members (which are responsible for the majority of Alu inserts
causing disease), without the massive number of bands obscuring the variant signals. We had




limited success with the use of PCR primers that added two bases to the end of the primer that
went into the genomic flanking sequence to allow us to display one sixteenth of the group of
bands at a time. Several primers gave use decent, although not crisp displays. I believe that our ¢
biggest problem with this approach was that some of the primers could sit down on sites in
which the last two bases base-paired using non Watson-Crick pairing (i.e. G-T pairing), resulting
in weaker bands that created background. In our efforts, although several primers worked pretty
well, others worked very poorly. A number of variants (include perfect match, altering
stringency, etc) did not improve these displays ultimately. Perhaps our biggest disappointment
was that several attempts to utilize subtraction strategies to eliminate the common bands did not
work at all. Our only observation was that the bands all got lighter, but even attempts to spike a
unique band in the mix did not allow us to enrich the unique band. These studies may have been
influenced by the presence of a small segment of common repetitive DNA sequence on the end
of each fragment, and they may have also been made more difficult by the very high A+T
content of the sequences adjacent to Alu elements.

As more human genomic sequence was made available in GENBANK, we were able to
identify new subfamilies of Alu elements. More importantly, we found that some of the
subfamilies showed very high levels of polymorphism in the human genome. Using a
combination of bioinformatics with measurements of the polymorphism associated with these
different subfamilies, we were able to determine the relative age and copy number of each of
their subfamilies and provide estimates of their likelihood of current activity. Although these
data did provide some new, smaller subfamilies that we could adapt to our display technique, by
far the majority of Alu elements that had inserted recently to cause disease still remained as part
of the larger Ya5 and Yb8 subfamilies. Thus, our original plan of displaying the majority of
potential Alu inserts in tumor DNA was not going to work with this approach.

As we approached year 3, we also began to tackle some of the issues associated with
adapting this technique to a number of tumor tissues to allow a reasonable sampling. If anything
the tumor tissues were even more intractable, partly because the DNA was not always of as high
a quality as the tissue culture DNA, and blood DN As, that we were using in the pilot
experiments. Furthermore, our display would be seriously handicapped by any heterogeneity in
the tumor tissue that might weaken the signals, while not lessening the background. Therefore,
although we worked out the ability to display distinct subsets of the recent Alu inserts, we were
never able to adapt the technique to be able to display a significant portion of these inserts in a
manner which convinced us that we would be able to see any significant portion of new inserts.
Given that new inserts may have been as low as one in 100 tumors, we began to explore
alternative approaches for addressing the potential role of retrotransposition in breast cancers.

Although the ideal was to look at authentic tumor tissues and look for authentic Alu
inserts, we would obtain a pretty good picture of the relative impact by using a reporter system
introduced into tumor cells and measuring the rate of retrotransposition of the reporter system in
normal versus transformed cells. The development of an L1 element that activated a neomycin
selection cassette upon retrotransposition, provided a potential method to quantify L1
retrotransposition rates in tumors *. Furthermore, as most of us believe that Alu retrotransposes
with the L1 machinery, using the L1 system should provide insight into both L1 and Alu rates.

Our initial experiments using p53 transformation as a model were very promising and
were reported in the last report. However, as we have learned more about the L1 assay, we
believe that those preliminary results were an artifact caused by the stimulatory influence of the
mutant p53 causing the cells to grow faster. To some extent this is also a function of cell plating



density and whether the G418 selection for neomycin resistance is able to be effective before the
cells approach confluence. Ultimately, after many repetitions, we can see no influence of p53
mutation on the L1 retrotransposition rate. However, we also wanted to look at the effect of cell ¢
cycle in general and we have been able to demonstrate that slowing cell growth by a factor of
two by lowering the growth temperature results in an order of magnitude decrease in
retrotransposition rates. Furthermore, this effect correlates with growth rate and not just
temperature. If the temperature is lowered just at the beginning of the assay, the rate does not
change. Thus, the L1 enzymes are not susceptible to temperature, instead, lowering the
temperature for a prolonged period has a secondary effect that greatly lowers retrotransposition
rates. We have utilized fluctuation analysis on long-term transformants for all of these assays
and have also created a transient transfection-based assay. At this point we are gearing up to
look at various breast cancer cell lines for their retrotransposition potential, as well as cells with
various genetic defects associated with tumorigenesis and DNA repair. Thus, although we
cannot yet answer the question of whether transformation alters retrotransposition and therefore
retrotransposition may contribute to the progression in cancer, we now have the tools and should
be able to test a number of model systems soon.




(7) Key Research Accomplishments

Year1

Year 2

Year 3

Establishment of optimum conditions for amplification of the most recent subfamilies of
Alu inserts

Obtaining clear displays of the Ya8 subfamily on acrylamide and agarose gels which
allow the isolation of insertion polymorphisms between different individuals.
Demonstrating the use of modified primers that display subsets of the Ya5 elements that
will allow at least a substantial portion of Ya$5 inserts to be studied.

Identification of the youngest, most active Alu subfamilies that can be amplified and
displayed directly without the use of subtraction protocols.

Development of a complete understanding of the recent amplification of Alu elements in
the human genome based on the fusion of bioinformatics on the complete human genome
sequence and laboratory-based studies.

Development of approaches to use retroposition reporter gene systems for studies of the
role of various genes and environmental influences on the retrotransposition frequency.

(8) Reportable Outcomes
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(9) Conclusions

We were able to develop a PCR procedure that can selectively amplify the subset of most
recently inserted Alu elements. Although we were able to display a subset of these elements, we
were unable to overcome sufficient technical difficulties to allow an assessment of the number of
Alu insertions occurring in breast tumors.

We developed quantitative approaches to measure the retrotransposition capability of
different cell types using a reporter-gene approach. Using this approach we showed that
dominant negative p53 mutations did not alter retrotransposition rates, but that major changes to
cells influencing growth rates had a tremendous influence. We are currently gearing up for a full
assessment of breast cancer cell lines, and a number of genes associated with tumorigenesis
using this quantitative assay.
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Potential Gene Conversion and Source Genes
for Recently Integrated Alu Elements
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Alu elements comprise >10% of the human genome. We have used a computational biology approach to
analyze the human genomic DNA sequence databases to determine the impact of gene conversion on the
sequence diversity of recently integrated Alu elements and to identify Alu elements that were potentially
retroposition competent. We analyzed 269 Alu Ya5 elements and identified 23 members of a new Alu subfamily
termed Yaba2 with an estimated copy number of 35 members, including the de novo Alu insertion in the NFI
gene. Our analysis of Alu elements containing one to four (Yal-Ya4) of the Ya5 subfamily-specific mutations
suggests that gene conversion contributed as much as 10%-20% of the variation between recently integrated
Alu elements. In addition, analysis of the middle A-rich region of the different Alu Ya5 members indicates a
tendency toward expansion of this region and subsequent generation of simple sequence repeats. Mining the
databases for putative retroposition-competent elements that share 100% nucleotide identity to the previously
reported de novo Alu insertions linked to human diseases resulted in the retrieval of I3 exact matches to the NF/
Alu repeat, three to the Alu element in BRCA2, and one to the Alu element in FGFR2 (Apert syndrome).
Transient transfections of the potential source gene for the Apert’s Alu with its endogenous flanking genomic

sequences demonstrated the transcriptional and presumptive transpositional competency of the element.

Alu elements belong to a class of retroposons termed
SINEs. SINEs are Short INterspersed Elements usually
~100-300 bp in length commonly found in introns, 3’
untranslated regions of genes, and intergenic genomic
regions (Deininger and Batzer 1993). Alu is the most
abundant class of SINEs in primate genomes, reaching
a copy number in excess of one million/haploid ge-
nome (Jelinek and Schmid 1982; Jurka et al. 1993, Smit
1999). Alu elements increase their genomic copy num-
ber by an amplification process termed retroposition
(Rogers and Willison 1983; Weiner et al. 1986).

Alu elements appear to have arisen in the last 65
million years (Deininger and Daniels 1986). The hu-
man Alu family of repeats is composed of a small num-
ber of distinct subfamilies characterized by subfamily-
specific diagnostic mutations (Slagel et al. 1987;
Willard et al. 1987; Shen et al. 1991; Batzer et al.
1996b). The source Alu gene(s) for each of the subfami-

SThese authors contributed equally to this work.

’These authors contributed equally to this work as senior au-
thors.

8Corresponding author.
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lies has been retropositionally activé during different
periods of primate evolution. The rate of Alu amplifi-
cation (mostly Sx subfamily) appears to have reached
its peak between 60 and 35 million years, and subse-
quently decreased several orders of magnitude to the
present amplification rate (Shen et al. 1991). Only a
limited number of SINEs, termed master or source
genes, appear to be capable of retroposition (Deininger
and Daniels 1986; Batzer et al. 1990; Deininger et al.
1992), although the critical factor(s) defining func-
tional source genes are not understood. A variety of
factors influence the retroposition process (Schmid
and Maraia 1992). All of the recently integrated young
Alu subfamilies appear to be retropositionally active.
Almost all of the recently integrated Alu elements
within the human genome belong to one of four
closely related subfamilies (Y, Ya5, Ya8, and Yb8), with
the majority being YaS and Yb8 subfamily members
(Batzer et al. 1990, 1995; Deininger and Batzer, 1999).

Previously, analysis of individual Alu elements
from the different subfamilies involved laborious pro-
cedures, such as cloning, library screening, and subse-
quent sequencing (Batzer et al. 1990, 1995; Arcot et al.
1995a). However, the availability of large-scale human

Genome Research 1485
www.genome.org
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genomic DNA sequences as a result of the Human Ge-
nome Project facilitates genomic database mining for
Alu elements (Roy et al. 1999). We have taken advan-
tage of these databases and have analyzed a significant
portion of the Alu Ya5 subfamily, as well as interme-
diates between the Ya5 subfamily and the ancestral Alu
Y subfamily. In addition, we searched the databases for
putative retroposition-competent source Alu genes
that generated the de novo Alu inserts associated with
a number of human diseases (Deininger and Batzer
1999).

RESULTS

Computational Analyses

To search for subfamilies unidentified previously
within the Ya5 Alu subfamily, we selected all of the Alu
family members that matched our YaS consensus
query sequence from the human genome non-
redundant (nr) database. Only Ya5 elements found
randomly within other sequences were included in our
analysis, thereby eliminating Alu elements that had
been identified previously in directed Alu-specific
projects. In addition, truncated Alu elements were

Yas GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGA 60
YA582 4 iteninivennnsensernssnsnossassssarsasssosssonenanos
D L) - R A
b2 7% R R R R I I
YASDL + i iteeeitsooasnnsssocossanansaasistssssesenssaannossns
B YT 5 O R R

11. 12

eliminated from the analysis. Ya4 elements that did
not contain the first Ya5-specific diagnostic mutation
#11 (Fig. 1) (Shen et al. 1991), which is a CpG dinucleo-
tide in the Ya5 subfamily, were considered as YaS Alu
family members. We obtained a total of 269 matches to
the YaS query sequence that met our criteria. Of these,
47 shared 100% nucleotide identity with the subfamily
consensus sequence and 83 were near perfect matches
(aside from a few CpG mutations).

Analysis of the 269 Ya5 Alu elements resulted in
the initial identification of two subsets of potential
subfamilies containing two diagnostic mutations each,
one with six members and the other with four. These
subfamiles will be referred to as YaSa2 and Ya5b2, re-
spectively, in compliance with the standard Alu sub-
family nomenclature (Batzer et al. 1996a). Each con-
sensus sequence with the two diagnostic mutations
specific to each new Alu subfamily is shown in Figure
1. Interestingly, the de novo Alu Ya$ insert present
within an intron of the NF1 gene (Wallace et al. 1991)
is an exact match to the Ya5a2 consensus. The nr da-
tabase contained 16.0% of human DNA sequences for
a total of 515,596,000 bases on the date of the search.
The estimated size of the Ya5a2 subfamily is (3 x 10°
bp/515,596,000 bp) X 6 unique YaSa2
matches = 35 subfamily members. In com-

,,,,,,,, s0  parison, the estimated size of the YaSb2
-------- 60 subfamily is (3 X 10° bp/515,596,000 bp)
,,,,,,,, 60 X 4unique Ya5b2 matches = 22 subfamily
-------- 60 members. We utilized only the randomly

found Ya5a2 elements for the calcula-

Ya$ TCACGAGGTCAGGAGATCGAGACCATCCCGGCTAARACGGTGAAACCCCGTCTCTACTAA 120 tions to avoid overestimating the size of

13 .

........ 120

120 the subfamilies. However, these numbers

""""" 120 may be underestimations, because some

120 specific polymorphic elements of these
subfamilies may not be represented in the

Ya5 AAATACAAAAAA-TTAGCCGGGCETAGTGGCGGGCGCCTGTAGTCCCAGCTACTTGGGAG 179 database.

Yab GCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGCGGAGCTTGCAGTGAGCCGAGATCCCG 239

"""" 179 families, we used their consensus se-

------- 180 To derive a second estimate of the copy

175 numbers of the Ya5a2 and Ya5b2 Alu sub-

quences as queries for the high throughput
15 . genome sequence (htgs) and genomic sur-
vey sequence (gss) databases. Seventeen ad-
ditional Alu Ya5a2 elements were found in
these searches. Of the 23 total Ya5a2 ele-
ments, 13 shared 100% nucleotide identity
with the subfamily consensus sequence. No
additional Ya5b2 elements were found in
the other databases, therefore the YaSb2
subfamily was not subjected to further
analysis. Three additional potential sub-
families, Ya5al (five members), Ya5b1 (four

Figure 1 Consensus sequence alignment of Ya5, and the potential new subfam-
ily members identified. Nucleotide substitutions at each position are indicated with
the appropriate nucleotide. Deletions are marked by dashes (-). The Ya5 diagnostic
nucleotides are indicated in bold with the corresponding diagnostic number above
as defined by Shen et al. (1991).
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members), and Ya5c1 (four members) with
only one specific diagnostic mutation were
identified (Fig. 1). Because of the small
copy number, and the possibility that some




Mosaic Alu Sequences

of those represent parallel mutations rather than new
subfamilies, no further analyses were performed.

To determine the age of the Ya5a2 subfamily, we
divided the nucleotide substitutions within the ele-
ments into those that have occurred in CpG dinucleo-
tides and those that have occurred in non-CpG posi-
tions. The distinction between types of mutations is
made because the CpG dinucleotides mutate at a rate
that is ~10 times faster than non-CpG (Labuda and
Striker 1989; Batzer et al. 1990), as a result of the
deamination of 5-methylcytosine (Bird 1980). A total
of five non-CpG mutations and seven CpG mutations
occurred within the 23 Alu Ya5a2 subfamily members
identified. By use of a neutral rate of evolution for pri-
mate-intervening DNA sequences of 0.15%/one-
million years (Miyamoto et al. 1987) and the non-CpG
mutation rate of 0.092% (5/5382 bases using only non-
CpG bases) within the 23 Ya5a2 Alu elements, yields
an estimated average age of 0.62 million years for the
Ya5a2 subfamily members with a predicted 95% con-
fidence level in the range of 0.28-1.08 million years,
given that the mutations were random and fit a bino-
mial distribution. The Ya5a2 subfamily appears to be
much younger than YaS5, Ya8, or Yb8 Alu subfamilies
with estimated ages of 2.8 million years (Batzer et al.
1990), 2.75 million years (Roy et al. 1999), and 2.7
million years (Batzer et al. 1995), respectively (Fig. 2).

Determination of the number of elements that
perfectly match the subfamily consensus sequence can
also give an indirect estimate of Alu subfamily age and
recent rate of mobilization. Recently transposed Alu

Yb8 Ya8 Ya$s Ya5a2
12(1)/27(5) 269 (47)  6(3)/23(13)
nr all nr nr gl
Ya5s
Y

Figure 2 Schematic for the evolution of recently integrated Alu
subfamilies. The origin of the Ya5a2 Alu subfamily is shown after
the divergence of Ya5 and Yb8 elements. The total number of
elements found in the nr-database (perfect matches in parenthe-
sis) are shown first separated by a slash from the total number of
elements found in all three databases (nr, gss, htgs). For the Ya5
elements only the nr-database results are shown.

Table 1. Alu Middle A-Rich Region

A,

Ya5-middle A
rich region 4 5 6 7 8 9 10 1N

T(A)TACATT® 0 269 9 1 0 1 — —
TATACA)TT® 0 2 269 379 11 7 3 0

®n =5 in Ya5 consensus.

Pn = 6 in Ya5 consensus.

Data from the non-redundant database only.
dAll 23 Ya5a2 members are included.

elements share higher levels of nucleotide identity
with their source copies because they have not resided
in the genome long enough to accumulate random
mutations. In contrast, older Alu elements that have
resided in the genome for longer periods of time tend
to have less nucleotide identity with their source genes
as a result of the accumulation of random mutations
subsequent to integration into the genome. We com-
pared our search results for the YaSa2 subfamily with
parallel searches from the Ya8 and Ya$5 Alu subfamilies.
Our BLAST searches from the nr database yielded one
perfect match of 12 elements for Ya8, 47 of 269 for Ya5,
and 3 of 6 for Ya5a2 (Fig. 2). Searching all three data-
bases (nr, gss, and htgs) yielded 5 perfect matches of 27
for Ya8 and 13 of 23 for YaSa2. These results are in
good agreement with the previous estimates, indicat-
ing that Ya5a2 is the youngest Alu subfamily reported
to date, as it also has the highest proportion of ele-
ments that share 100% nucleotide identity with the
consensus sequence.

Stability of the Middle A-Rich Region in Alu Ya5
Members

The oligo-dA-rich tails and middle A-rich regions of
Alu elements have been shown previously to serve as
nuclei for the genesis of simple sequence repeats (Arcot
et al. 1995b). In the autosomal recessive neurodegen-
erative disease, Friedreich ataxia, the most common
mutation, is the hyperexpansion of a GAA within the
middle A-rich region of an Sx Alu element (Monter-
mini et al. 1997). Because these regions appear un-
stable, we analyzed the middle A-rich region of Alu
elements retrieved from the databases to detect expan-
sions/contractions of this sequence.

To evaluate potential expansions/contractions, we
performed a BLAST query of three databases (nr, htgs,
and gss) using the Alu YaS consensus sequence with
varying numbers of A nucleotides within the middle
A-rich region (TA,TACA,TT). Our results demonstrate
that the majority of the elements identified matched
the consensus sequence. However, there is a trend for
an A expansion at both positions (Table 1). In contrast,
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very few sequence contractions were detected for any
of the positions.

Human Genomic Variation

To determine the human genomic variation associated
with the Ya5a2 Alu subfamily members, we selected
the 13 Ya5a2 elements identical to the subfamily con-
sensus sequence as well as 2 others and determined the
degrec of fixation associated with the elements using
PCR-based assays of a panel of diverse human DNA
samples with the primers shown in Table 2. The panel
is composed of 20 individuals of European origin, Af-
rican-Americans, Greenland natives, and Egyptians
for a total of 80 individuals (160 chromosomes). The
Alu elements were classified as fixed absent, fixed
present, and high, intermediate, or low frequency
insertion polymorphisms (see Table 3 for definitions).
By use of this approach, 3 of the 14 elements tested
(YaSNBC206, Ya5NBC207, and YaSNBC23S5) were al-
ways present in the human genomes that were sur-
veyed, suggesting that these elements became fixed in
the genome prior to the radiation of modern humans
from Africa. Five of the elements (YaSNBC208,
Ya5NBC240, YaS5NBC241, YaSNBC242, and
Ya5NBC220) are intermediate frequency Alu insertion
polymorphisms. The remaining six elements are low-
frequency Alu insertion polymorphisms (Table 3). The
population-specific genotypes and levels of heterozy-
gosity for each element are shown in Table 4. The high
proportion of polymorphic elements is in good agree-
ment with our other observations, indicating that

the YaSa2 subfamily is younger than any of the other
Alu subfamilies identified previously in the human ge-
nome.

Gene Conversion and Alu Sequence Diversity

In our query of the human genome (nr) database, 91 of
the Alu elements identified contain one to four of the
five Ya5 diagnostic nucleotides (Fig. 1). Of these 91
intermediate elements, 4 are Yal, 1 Ya2, 7 Ya3, and 79
Ya4 Alu elements (Fig. 3). Surprisingly, not all of the
Alu elements with different numbers of subfamily mu-
tations had the same combination of mutations. To
facilitate identification of the individual elements with
different diagnostic mutation combinations, the diag-
nostic nucleotides were numbered consecutively in or-
der of abundance (Ya3.1, Ya3.2, etc., see Fig. 3). Seven-
teen Alu elements (Ya4.4) did not contain the first di-
agnostic mutation (#11), but were still classified as Yas
for the analyses outlined above.

Previous evolutionary analyses of the Ya5 founder
element with different primate DNA samples demon-
strated the sequential accumulation of the YaS diag-
nostic mutations with diagnostic positions #13/#14
first, followed by #12/#16, and finally position #11
(Shaikh and Deininger 1996). Our data are not consis-
tent with a sequential order in the accumulation of the
diagnostic mutations. The elements classified as Yal,
Ya2, Ya3.4, Ya3.5, and Ya4.4 (26 total) fit the proposed
order (Fig. 3). However, the remaining 65 elements rep-
resent almost every other permutated order. Several
mechanisms could explain the occurrence for mosaic

Table 2. Alu Ya5a2 PCR Primers, Chromosomal Locations, and PCR Product Sizes

Product size©

Chromo-
Name 5' Primer sequence (5'-3") 3’ Primer sequence (5'A-3") AT.2 some® filled empty
YaSNBC206  TCCTTAGCTATCTCACAAGCTACAT  ACACATTTCCTTCAAGAGGTCAAAG 60°C 4 734 424
YaSNBC207  CAGTTTTATACACTGGCCTGTTTTC  TTGTAGGAGAAAGAGGGGAAATACT 50°C 6 443 122
Ya5NBC208  AATACCTTGTACATCTTCACCCCTA  TCTCTCTGCTGCACAGTITGTT 50°C 14 441 115
Ya5NBC240  CAGGAGATAAATATGTTCGGAGAGT TAACTGGGACAGTGAGTTTTACCTG 55°C 9 505 202
Ya5SNBC241 GGTTCCAATAGAGAGCAACAGAA ACCTTAAGCTTTCCCCCAGA 55°C 15 392 66
Ya5NBC242  AACAAAATTCCCTTTCCTCCA GGCAATCTGACCTTGGGTAA 55°C 7 503 192
Ya5SNBC7 TGATGGATATTTGGGTTGGTTC GGACTGTAAACTAGTTCAACCATTGTG  60°C 7 522 216
Ya5NBC205  ACATGAAGGGCCGACTGTAT TGCTGCTGCATTATCAACTG 50°C 21 435 81
Ya5NBC209  GTCTATGGGAAGATGAAGAATAGGA GATGGAGTCACTCATGTGAAAAGTA 55°C 14 447 116
Ya5NBC239  CAGCTGAGAACTGTCACAAATAGAA  ATCAATGACTGACTTGTGCTGAGT 55°C 9 531 198
Ya5NBC243  CCATGATTCGTCATTCACCA AGGAGACCTGCCAATGAATG 60°C 21 406 86
Ya5NBC220  AAATCAAGCTGCCATACCTCA GAAACCATCCTTCACAGTGG 60°C 1 463 141
Ya5NBC235  CCCAAGGCACTTGCTGTTA CCCTTCGAGAAAGAGGAAGG 50°C 2 391 76
Ya5NBC244  CCTATGGCTGAAACTTCTGAAACT ATATCTTGGTCCACTAGACAAGCAC 60°C 18 453 130
Ya5NBC237¢ CCCATGGAGGGTCTTTCCTA CTGGAAACCATCCTTCACAGT 60°C 1 410 88

2Amplification of each locus required 2.5 min at 94°C initial denaturing, and 32 cycles for 1 min 94°C, 1-min annealing temperature
(A.T.) and 1-min elongation at 72°C. A final extension time of 10 min at 72°C was also used.
bChromosomal location determined from accession information or by PCR analysis of NIGMS monochromosomal hybrid cell line DNA

samples.

“Empty product sizes calculated by removing the Alu element and one direct repeat from the filled sites that were identified.

dAlu Ya5a2 element of the FGFR2 gene.
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Table 3. Alu Ya5a2 (NFT)-Associated Human Genomic Diversity

Ya5a2 elements

Accession no. (duplicates)

Position

Allele frequency®

Ya5NBC206
Ya5NBC207
Ya5NBC208
Ya5NBC220
Ya5NBC240
Ya5NBC241
Ya5NBC242
Ya5NBC7
Ya5NBC205
Ya5NBC209
Ya5NBC239
Ya5NBC244
Ya5NBC243
Ya5NBC235°
YaSNBC237¢

AC004057

AL118555 (AL132992)

AL109919
AC007611

AC133470 (AL135841)

AC018924
ACO009517
AC004848
AL011328
AC00808
AL133284
AC026839
Aj011929
AQ748733
AL031274

76767-77048

9981-9700 (40728-41009)

70170-69889
136715-136434

34800-35081 (49829-49548)

144017-144298
161301-161582
24522-24241
204488-204207
147056-146775
115867-115586
64885-64604
151192-151473
458-739
33175-33501

fixed present
fixed present
intermediate
intermediate

intermediate

intermediate
intermediate

low
low
low
low
low
low

fixed present
intermediate

2Allele frequency was classified as fixed present, fixed absent, low, intermediate, or high frequency insertion polymorphism. (Fixed
present) every individual tested had the Alu element in both chromosomes; (low frequency insertion polymorphism) the absence of
the element from all individuals tested, except for one or two homozygous or heterozygous individuals; (intermediate frequency
insertion polymorphism) the Alu element is variable as to its presence or absence in at least one population; (high frequency insertion
polymorphism) the element is present in all individuals in the populations tested, except for one or two heterozygous or absent

individuals.
bSeveral Ns.

YaSNBC237 is the exact match to the FGFR2 Alu insertion.

Alu elements, which are addressed in the discussion
section. However, we believe the most likely explana-
tion for the existence of these mosaic elements is
through gene conversion events. A limited amount of
gene conversion between Yb8 Alu elements has been

Table 4. Alu Ya5a2-Associated Human Genomic Diversity

reported previously (Batzer et al. 1995; Kass et al.
1995). In theory, gene conversion may change the se-
quence of all or part of any Alu element in either an
evolutionarily forward (Ya$S subfamily in this case) or
backward (Y subfamily) direction by changing the di-

African American Greenland natives European Egyptian
Elements genotype® fAlu® genotypes fAlu genotypes fAlu genotypes fAlu het.©
Ya5NBC206 20 0 0 1.000 20 0 0 1.000 20 0 0 1000 20 O 0 1.000 0.000
Ya5NBC207 20 0 0 1.000 20 0 0 1.000 20 0 0 1.000 20 O 0 1.000 0.000
YaSNBC208 4 1 7 0.375 3 0 4 0429 13 0 6 0.684 7 0 5 0583 0.482
Ya5NBC236 5 6 2 0.615 5 8 6 0474 15 5 0 0.875 6 8 1 0.667 0422
Ya5NBC240 5 1 9 0367 11 0 4 0.733 5 1 10 0.344 5 3 3 0591 0.464
YaSNBC241 3 9 5 0.441 6 11 2 0.605 0 7 M 0.194 3 8 4 0.467 0.459
YaSNBC242 2 13 1 0.531 7 4 3 0.643 3 4 11 0.278 3 3 1 0.643 0.474
YaSNBC7 0 0 19 0.000 0 0 20 0.000 0 0 20 0.000 0 O 20 0.000 0.000
Ya5NBC205 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0.000
Ya5NBC209 0 1 17 0.028 0 0 17 0.000 0 0 19 0.000 0 0 19 0.000 0.000
YaSNBC239 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0.000
Ya5NBC243 0 0 20 0.000 0 0 20 0.000 0 0 20 0.000 0 O 20 0.000 0.000
YaSNBC220 0o 14 5 0.368 1 15 2 0472 0 18 1 0.474 o 9 2 0409 0.502
YaS5NBC244 0 0 12 100 — — — — 0 0 10 0.000 0 0 8 0.000 0.000
Ya5NBC235 20 0 0 1.000 20 0 0 1.000 20 0 0 1000 20 O 0 1.000 0.000
YaSNBC237¢ 18 1 0 0974 15 4 0 0.895 20 0 0 1000 18 1 0 0974 0.075
2Genotypes: +/+ Alu, +/— Alu, —/— Alu.
PFrequency of the presence of the Alu.
“Average heterozygosity.
dyaSNBC237 is the exact match to the FGFR2 Alu insertion.
— not determined.
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Figure 3 Evolution of the diagnostic nucleotide positions from
Y to Ya5 Alu elements. Alignment of the five Alu Ya5 diagnostic
nucleotides as defined by Shen et al. (1991) and the different
Yal, Ya2, Ya3, and Ya4 elements found in the nr database. For
easy reference, individual elements containing different combi-
nations of the diagnostic mutations were numbered consecu-
tively in order of abundance (Ya3.1, Ya3.2, etc.). Ya4.4 elements
were considered as Ya5 elements in the first Ya5 subfamily analy-
sis in this paper. The total number of elements found for each
subgroup is indicated at left in parenthesis. Potential forward (f)
or backward (b) gene conversions are indicated at right. The
previously reported order of appearance of Ya5 diagnostic mu-
tations (Shaikh and Deininger 1996) is indicated below. Elements
with diagnostic mutations that follow the stepwise hierarchical
accumulation are circled.

agnostic mutations. In addition, double gene conver-
sions would be extremely rare, making the direction of
the gene conversion clear in some elements. We clas-
sified the 91 mosaic Alu element sequences as gene
converted forward (f), backward (b), or could not be
determined (-), (see Fig. 3) If the Alu elements that fit
the proposed sequential evolution are ignored in the
analysis, all of the other elements may be classified as
backward gene conversion (32 total) or could not be
determined (33 total), and none were clearly gene-
converted forward. Therefore, backward gene conver-
sion may have contributed to between 10% and 20%
(32 to 65/269 Ya5S + [91-17] Yal-Ya4) of the Alu Yas
sequence diversity. Interestingly, evaluation of the five
random YaS5a2 non-CpG mutations shows that one
mutation in position #13 is a backward mutation to
the Y subfamily, another putative example of a reverse
gene conversion.

In Search of Retroposition-Competent Alu Repeats

Sixteen different Alu insertions have been linked to
human diseases (Deininger and Batzer 1999). Four be-
long to the Alu Y subfamily, one to the Ya4 subfamily,
eight to the Ya5 subfamily, and three to the Yb8 sub-
family. Closer inspection of the nucleotide sequences
of these Alu elements show that they have some mu-
tations that are different from their respective subfam-
ily consensus sequences. Because these Alu insertions
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are very recent in origin, they are likely to be identical
to their source genes aside from rare mutations intro-
duced during reverse transcription of the Alu element.
Therefore, sequence database queries utilizing each Alu
element along with its individual mutations (away
from the subfamily consensus sequence) may facilitate
the identification of the source Alu element that gen-
erated the copy. This strategy is similar to that used
previously in the identification of active LINE elements
from the human genome (Dombroski et al. 1993).

A database query using the sequence of the indi-
vidual Alu elements responsible for each disease to
mine three databases (nr, htgs, and gss) identified exact
complements to four of the disease-associated Alu re-
peats. Thirteen of the identified elements were exact
matches to the NF1 Alu insertion (Ya5a2 subfamily,
Table 3; Wallace et al. 1991); three were exact matches
to the BRCA2 Alu element (Miki et al. 1996) (accession
nos. AL121964, AL136319, and AL135778); one
matched the FGFR2 Alu repeat (Oldridge et al. 1999)
(accession no. AL031274); and one matched the Alu
repeat in the JL2RG gene (Lester et al. 1997) (accession
no. AC010888).

Potential Source Gene for the Ya5 Insert in FGFRZ

As mentioned above, our BLAST query only detected
one exact match (accession no. AL0O31274 or
YaSNBC237) to the Ya5 Alu found in the FGFR2 gene
that caused Apert syndrome. We estimated the level of
human genomic variation associated with YaSNBC237
using the same human DNA panel and determined
that it was an intermediate frequency Alu insertion
polymorphism (Table 4).

Mobilization-competent Alu elements must be ca-
pable of transcription, the first step in the retroposition
process. To evaluate Alu YaSNBC237 as a potential
source gene for the de novo insert in the patient with
Apert syndrome, we determined its transcription capa-
bility. Constructs with the genetic loci containing the
Ya5NBC237 Alu and the de novo Apert syndrome Alu
element were made. Transcription levels from the two
constructs were evaluated by Northern blot analysis
relative to a control plasmid in which the Alu element
is flanked immediately upstream by vector sequence.

Transient transfections (Fig. 4) of the constructs
into rodent cell line C6 (rat glial tumor) were per-
formed. Although the Alu element in the control plas-
mid has an intact internal Pol III promoter, Alu tran-
scripts are barely detectable from the control plasmid.
In contrast, the transcription from the Apert’s Alu ele-
ment and its potential source gene were elevated three-
to fourfold, as expected for putative mobilization-
competent Alu repeats. This result suggests that the
genomic flanking sequence of Ya5NBC237 probably
makes the Alu transcription competent, one of the sev-
eral requirements of a source gene. The same results
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Figure 4 Evaluation of transcriptional capability of the poten-
tial FGFR2 source Ya5 Alu element. The transcriptional efficiency
of the de novo FGFR2 Alu repeat and its putative source gene
were evaluated by Northern blot analysis from transient transfec-
tion studies. The following constructs were evaluated: (lane 1)
p2°°Ap, (lane 2) p-*'YaSNBC237, and (lane 3) pNFYa5NBC237.
Lanes 4 and 5 are internal control only, and no DNA controls,
respectively. Small arrows indicate the Alu transcripts and the
open arrow indicates the internal control transcript. The ratio of
the Alu transcript/control transcript (numbers below) was nor-
malized to the pN"Ya5NBC237 transcription ratio, which was as-
signed the arbitrary value of 1.

were obtained from transfections in the human embry-
onic kidney cell line 293 (data not shown).

DISCUSSION

Our computational and experimental analyses of the
Ya5 subfamily of Alu repeats provides an overall pic-
ture of the most active of the recently integrated young
Alu subfamilies from the human genome. The analysis
of Alu Ya5 repeats allowed us to address a number of
questions about the biology of these elements, such as
the potential impact of gene conversion events, and
the identification of Alu family members from the hu-
man genome that may be capable of retroposition.
Alu elements spread throughout the genome by
retroposition in the last 65 million years. The master/
source gene model (Batzer et al. 1990; Shen et al. 1991;
Deininger et al. 1992) posits that a very small subset of
the >1,000,000 Alu elements within the human ge-
nome are capable of high levels of retroposition; al-
though a much larger number may make a few copies.
The formation of Alu subfamilies may be explained by
the sequential accumulation of mutations within the
active source gene(s) followed by proliferation of the
mutated source elements. A number of studies indicate
that relatively few source Alu genes have played a
dominant role in the amplification and evolution of
Alu elements (Shen et al. 1991; Deininger et al. 1992;
Deininger and Batzer 1993; Kapitonov and Jurka
1996). Although retroposition is the primary mode of
SINE mobilization and sequence evolution through

mutations in the source gene(s), our analysis suggests
that gene conversion and genetic instability of Alu-
based simple sequence repeats have also had a signifi-
cant impact on the sequence architecture of this major
family of human genomic sequences.

There are several alternatives that could explain
the occurrence of mosaic Alu elements. First, some of
the mosaic Alu elements with a single mutation could
be explained by the occurrence of parallel mutations.
However, this seems unlikely unless there were selec-
tion for these specific mutations, possibly through a
post-transcriptional selection process (Sinnett et al.
1992). It is also difficult to envision a selection process
that would only select for mutations at adjacent diag-
nostic positions, such as we see here. Also, recombina-
tion between different Alu elements could have gener-
ated some of these intermediate Alu elements that con-
tain a mosaic of diagnostic mutations. However, in
many cases, multiple recornbination events would be
required to obtain this outcome, making it highly un-
likely. Although there are alternative mechanisms, we
believe gene conversion is the most likely explanation
for the occurrence of mosaic Alu elements.

The mechanisms of genome-wide gene conversion
between mobile elements are not well understood in
humans (see Kass et al. 1995, and references therein).
Our data show that even the very short, dispersed Alu
elements appear to be capable of high levels of gene
conversion, which usually involve only short sequence
stretches. In addition, our data show that reverse or
backward gene conversions may be more favored. It
seems likely that higher levels of the Y element copy
number (Shen et al. 1991) or transcription (Shaikh et
al. 1997) may play a role in determining the direction-
ality of the gene conversion events. Although older Alu
subfamilies, such as J and Sx are present in higher copy
numbers in the genome, they diverged greatly from
their consensus sequences due to mutations that have
accumulated throughout evolution. Gene conversion
would not be favored between such divergent se-
quences. However, Alu Y elements tend to be more
conserved (better matches to Ya5) and with high copy
number (Batzer et al. 1995). Therefore, both abun-
dance (genomic copy number and/or transcript levels)
and sequence identity appear to be influential in the
Alu gene conversion events observed.

There are multiple examples of gene conversion
events in literature. Genetic exchange between exog-
enous and different endogenous mouse L1 elements
has been demonstrated previously to readily occur
(Belmaaza et al. 1990). Kass et al. (1995) reported pre-
viously a gene conversion event in which one of the
oldest Alu family members was converted to one of the
youngest Alu subfamilies, Yb8. In addition, a partially
converted Yb8 Alu element was also reported previ-
ously by Batzer et al. (1995). In yeast, some types of
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mobile elements spread through the genome by gene
converting pre-existing elements (Hoff et al. 1998).
When we combine this type of mobilization in the
yeast genome with the Alu gene conversions reported
previously, as well as those in this paper, one could
argue that gene conversion may represent a second
type of amplification mechanism for short interspersed
elements in the human genome. These observations
suggest that evolutionary studies of all types of inter-
spersed elements that ignore gene conversion events
may lead to biased conclusions.

Variations in the length of the middle A-rich re-
gion and oligo-dA-rich tails of Alu elements are not
uncommon (Economou et al. 1990; Arcot et al. 1995b;
Jurka and Pethiyagoda 1995). Microsatellite repeats
have been found to be associated with the 3’ oligo (dA)
tails and the middle A-rich region of Alu elements. In
the case of Friedreich ataxia, the most common muta-
tion is the hyperexpansion of a GAA trinucleotide re-
peat within the middle A-rich region of an Sx Alu
(Montermini et al. 1997). However, microsatellites in
the middle of Alu elements are not as common because
of the much shorter initial length of the middle A-rich
region. Arcot et al. (1995b) reported previously that
only about one-fourth of the Alu elements containing
(AC),, repeats had them as a part of their middle A-rich
region. The one specific example they studied in detail
had an evolutionary expansion of the A-rich region
(orangutan and gibbon) before the genesis of the AC
repeat; suggesting the requirement for an initial expan-
sion. Interestingly, our large-scale analysis of the
middle A-rich regions of Ya5 elements demonstrates a
trend toward expansion of the A region, providing ad-
ditional support for this region of the Alu elements to
act as a potential nucleus for the genesis of simple se-
quence repeats.

From our subset of 269 AluYa$ elements, we were
able to identify a new Alu subfamily termed YaSaZ2. The
estimated average age of 0.62 million years (0.28-1.08
million years with 95% confidence) makes Ya5a2 the
youngest subfamily of Alu repeats identified in the hu-
man genome to date. It is as abundant as the Ya8 sub-
family (Roy et al. 1999) and its higher level of insertion
polymorphism suggests a higher level of current retro-
position. The YaSa2 subfamily may have originated
from a YaS Alu element that inserted in a genomic
region that favored transcription and corresponding
retroposition activity of the element, thereby generat-
ing a source gene. The subsequent accumulation of the
two specific mutations facilitated the differentiation of
the copies made by the Ya5a2 source gene from the
larger background of several hundred genomic Ya5 Alu
family members. As new Alu elements integrate into
the genome in favorable genomic locations, they can
occasionally remain retropositionally competent and
generate copies of themselves. However, the frequency
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of fortuitous insertions of new Alu elements into fa-
vorable genomic locations for subsequent mobilization
is still a rare event because the continuity of the hier-
archical subfamily sequence structure of the Alu ele-
ments is largely conserved throughout primate evolu-
tion.

Alu elements that are polymorphic for insertion
presence/absence have been proven previously to be
useful for the study of human population genetics and
forensics (Batzer et al. 1991; Jorde et al. 2000; Perna et
al. 1992; Batzer et al. 1994; Tishkoff et al. 1996; Stonek-
ing et al. 1997). The identification of a very young Alu
subfamily with a high proportion of polymorphic
members provides a new source of Alu insertion poly-
morphisms for the study of human population genet-
ics. However, it is important to note that theYaSa2
subfamily is extremely small (~35 copies total in a
background of >1,000,000) comparable with Ya8, so
that an exhaustive analysis of a single human genome
would only generate ~20 polymorphic Ya5a2 elements.

Because our analysis of Alu elements related to the
Apert’s insertion only included ~40% of the human
genome (both finished and draft sequence included),
there are possibly one or two other perfect comple-
ments in the human genome that have not yet been
sequenced and may be the actual source gene for these
elements. The transcriptional potential of this element
would be consistent with its role as the potential
source Alu gene. This confirms the existence of minor
active source genes that differ from the source gene
that generated almost all of the Alu elements present in
the human genome today. In addition, the de novo
Apert’s Alu element was also transcriptionally active.
There are two possible explanations for this result.
First, the transcriptional capacity of the elements was
evaluated by transient transfections in tissue culture.
This system does not reflect the influence of chromatin
structure and methylation patterns (position effects)
on the transcription and presumably retroposition
potential of the two Alu repeats. Alternatively, the
de novo Apert’s Alu element may have inserted in
a region of the FGFR2 gene that fortuitously enhanc-
es its own transcription capability. Although further
studies will be required to make more definitive state-
ments in this regard, the transcriptional capability of
YaSNBC237 is consistent with one of the many re-
quirements a source gene possesses, making it a plau-
sible candidate source gene for the de novo Apert’s
insertion.

In summary, the computational analyses of a sub-
set of recently integrated Alu elements demonstrate
that Alu sequence evolution is affected by a number of
dynamic events. New retroposition-competent Alu
source genes, gene conversion, and genetic instability
each play an important role in Alu sequence evolution
and proliferation within the human genome.
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METHODS

Computational Analyses

Screening of the GenBank nr, the htgs, and the gss databases
were performed by use of the Advanced Basic Local Alignment
Search Tool 2.0 (BLAST) (Altschul et al. 1990) available from
the National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/). For the Ya$5 subfamily analysis, the
database was searched for matches to the 281 bases of the Ya$
consensus sequence with the following advanced options:
-e 1.0 e-120, -b 1000, and -v 1000. A region composed of 500
bases of flanking DNA sequence directly adjacent to the se-
quences identified from the databases that matched the initial
GenBank BLAST query were subjected to annotation by use of
either RepeatMasker2 from the University of Washington Ge-
nome Center server (http://ftp.genome.washington.edu/cgi-
bin/RepeatMasker) or Censor from the Genetic Information
Research Institute (http://www.girinst.org/Censor_Server-
Data_Entry_Forms.html) (Jurka et al. 1996). These programs
annotate the repeat sequence content of DNA sequences from
humans and rodents. The sequences were then subjected to
more detailed analysis by use of MegAlign (DNAStar version
3.1.7 for Windows 3.2). The following parameters were used
to select the Ya5 elements to be analyzed: (1) Ya5 had to have
all five diagnostic nucleotides (except for the first position, as
it is a highly mutable CpG). (2) No truncated Alu elements
were included in the analysis. (3) No Alu elements identified
as a result of directed cloning strategies designed to identify
Alu repeats were included (only those randomly found within
larger data sequence). (4) Duplicate Alu elements were elimi-
nated on the basis of flanking sequences. The consensus se-
quences of the Yb8 and Ya8 subfamilies were used for parallel
searches of the three GenBank databases mentioned above. A
complete list of the Alu elements identified from the GenBank
search is available from M.A.B. or P.L.D. and at http://
www.genome.org/cgi/doi/10.1101/gr152300.

To search for putative source genes of the Alu elements
that have been associated previously with different diseases,
the three GenBank databases were searched by use of the se-
quence of each individual repeat to identify exact comple-
ments (Deininger and Batzer 1999).

DNA Samples

Human DNA samples from the European, African-American,
Egyptian, and Greenland native population groups were iso-
lated from peripheral blood lymphocytes (Ausubel et al. 1996)
that were available from previous studies (Roy et al. 1999).

Oligonucleotide Primer Design and PCR
Amplification

A region composed of ~500 bases of flanking unique DNA
sequences adjacent to each Alu repeat were used to design
primers for 14 Ya5a2 Alu elements (13 exact matches to con-
sensus, Table 2). PCR primers were designed with the Primer3
software (Whitehead Institute for Biomedical Research)
(http://www.genome.wi.mit.edu/cgi-bin/primer/primer3_
www.cgi). The resultant PCR primers were screened against
the GenBank nr database for the presence of repetitive ele-
ments by use of the BLAST program, and primers that resided
within known repetitive elements were discarded and new
primers were designed. PCR amplification was carried out in
25-pL reactions with 50-100 ng of target DNA, 40 pM of each
oligonucleotide primer, 200 yM dNTPs in 50 mM KCI, 1.5

mM MgCl,, 10 mM Tris-HCI (pH 8.4), and Taq DNA polymer-
ase (1.25 units) as recommended by the supplier (Life Tech-
nologies). Each sample was subjected to the following ampli-
fication cycle: an initial denaturation of 2:30 min at 94°C, 1
min of denaturation at 94°C, 1 min at the annealing tempera-
ture, 1 min of extension at 72°C, repeated for 32 cycles, fol-
lowed by a final extension at 72°C for 10 min. Twenty micro-
liters of each sample was fractionated on a 2% agarose gel
with 0.25 pg/ml ethidium bromide. PCR products were di-
rectly visualized by UV fluorescence. The human genomic
diversity associated with each element was determined by the
amplification of 20 individuals from each of 4 populations
(African American, Greenland native, European, and Egyp-
tian; 160 total chromosomes). The chromosomal location for
elements identified from randomly sequenced large-insert
clones was determined by PCR analysis of National Institute
of General Medical Sciences (NIGMS) human/rodent somatic
cell hybrid mapping panels 1 and 2 (Coriell Institute for Medi-
cal Research, Camden, NJ).

Construction of Plasmids

The following constructs were made: p**¢YaSNBC237 (416
bp upstream genomic - Alu - 223 bases downstream);
p2?°YaSAp (290 bp upstream genomic — Alu - 293 bases); and
p~TYaSNBC237 (no upstream vector flank-Alu — 223 bases).
Unless otherwise noted, PCR was performed in 20-uL reac-
tions by use of an MJ Research PTC 200 thermal cycler with
the following conditions: 1X Promega buffer, 1.5 mM MgCl,,
200 uM dNTPs, 0.25 pM primers, 1.5 units of Taq polymerase
(Promega) at 94°C for 2 min; 94°C for 20 sec, 55°C (annealing
temperature) for 20 sec, 72°C for 1 min, for 30 cycles; 72° C for
3 min. To PCR amplify and clone the 864-bp fragment con-
taining the de novo Alu Ya$5 from Apert syndrome patient 1
(accession no. AF097344), the following primers were used:
forward, 5'-GGTGTGGCCAAAGTGGAGGATGTGTAC-3' and
reverse, 5'-TTATTCAAGGATAAAAGGGGCCATTTC-3" with
an annealing temperature of 50°C; and for the 920-bp frag-
ment containing AluYaSNBC237 (accession no. AL031274)
the primers used were: forward, S'-TTATTCCATTG
GTCCTTTCCACCAG-3' and reverse, 5'-CAGGCAGGGAGG
TACTTGTCTCTTG-3' with an annealing temperature of 55°C.

For the p™'Ya5NBC237, PCR amplification from the
clone was done with the same reverse primer and the FAluS
primer 5'-GGCCGGGCGCGGTGGCTCA-3'.

The final PCR product of the complete construct was
cloned into pGEMTeasy Vector System I (Promega). Con-
structs were subjected to DNA sequence analysis to verify
their sequence context. Purified plasmids from the constructs
were prepared by alkaline lysis of bacterial cells followed by
banding in a CsCl gradient twice. DNA concentrations were
determined spectrophotometrically by use of A,4, and veri-
fied by visual examination of ethidium bromide-stained aga-
rose gels.

Alu Transcription in Cell Lines and RNA Analysis

Transient transfections were carried out in the rodent cell line
C6 glioma (ATCC CCL107). Monolayers were grown to S0%-
70% confluency and transfected with 3 pg of the construct-
containing plasmid and 1 pg of control plasmid (p”>'BC1) by
use of LipofectAmine Plus (GIBCO Life Sciences) following
the manufacturer’s recommended protocol. Total RNA was
isolated 16-20 h post-transfection.

RNA was extracted from cell lines utilizing the Trizol Re-
agent (Life Technologies, Inc.) according to the manufactur-
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er's protocol. Equal amounts of RNA were fractionated on a
2% agarose-formaldehyde gel and then transferred to a nylon
membrane, Hybond-N (Amersham). Northern blots were hy-
bridized utilizing the following end-labeled oligonucleotide
probes: unique-1 S'-TGTGTGTGCCAGTTACCTTG-3’
(complementary to the 3’ end of the control plasmid) and
AluYAS-1 5-ACCGTTTTAGCCGGGAATGGTC-3" (comple-
mentary to Ya5 Alu RNA, but not to 7SL) in 5X SSC, 5X
Denhardt’s, 1% SDS, and 100 pg/mL herring sperm DNA. Oli-
gonucleotides were end labeled by incorporating [y-**PJATP
(Amersham) with T4 polynucleotide kinase (New England
BioLabs), and subsequently separated from free label by filtra-
tion through a Sephadex G-50 column. Blots were washed
three times at 45°C with a low stringency buffer (2x SSC and
1% SDS) and subjected to autoradiography or quantified with
a FujiFilm FLA-2000 fluorescent image analyzer (Fuji Photo
Film Co. LTD). Statistical analysis was performed with the
Jandel SigmaStat Statistical Software Version 2, (Jandel Cor-
poration).
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Alu elements have amplified in primate genomes
through a RNA-dependent mechanism, termed ret-
roposition, and have reached a copy number in excess
of 500,000 copies per human genome. These elements
have been proposed to have a number of functions in
the human genome, and have certainly had a major
impact on genomic architecture. Alu elements con-
tinue to amplify at a rate of about one insertion every
200 new births. We have found 16 examples of dis-
eases caused by the insertion of Alu elements, sug-
gesting that they may contribute to about 0.1% of hu-
man genetic disorders by this mechanism. The large
number of Alu elements within primate genomes also
provides abundant opportunities for unequal homol-
ogous recombination events. These events often oc-
cur intrachromosomally, resulting in deletion or du-
plication of exons in a gene, but they also can occur
interchromosomally, causing more complex chromo-
somal abnormalities. We have found 33 cases of germ-
line genetic diseases and 16 cases of cancer caused by
unequal homologous recombination between Alu re-
peats. We estimate that this mode of mutagenesis ac-
counts for another 0.3% of human genetic diseases.
Between these different mechanisms, Alu elements
have not only contributed a great deal to the evolu-
tion of the genome but also continue to contribute to
a significant portion of human genetic diseases. © 1999

Academic Press
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THE SPREAD OF Alu ELEMENTS IN THE
HUMAN GENOME

Alu elements represent a sequence of approxi-
mately 300 nucleotides (nt) in length that are tran-
scribed by RNA polymerase II1. The RNA transcript
is then reverse-transcribed and inserted into a new
location in the genome. This RNA-mediated process
for making new copies of the element is termed
retroposition (1). Different Alu elements in the ge-
nome are not identical to one another. It appears
that Alu elements that have integrated recently
within the genome are quite homogeneous, and al-
most exact copies of one another (2). However, the
older copies have accumulated random mutations,
making them typically divergent by 20% or more
from one another at the sequence level (3).

Alu elements began inserting early in primate
evolution, approximately 65 mya (3). Although there
are some related elements in mammals outside of
the primate order, they do not have the specific
structure of Alu elements. The rate of Alu amplifi-
cation appears to have reached a maximum between
35 and 60 mya, and is currently amplifying at only
1% of the maximum rate. There are probably only
about 2000 Alus specific to the human genome, and
not found in chimpanzee and gorilla. Thus, about
99.8% of the 500,000 Alus in the human genome can
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TABLE 1
Alu Insertions and Disease
Locus Distribution Subfamily Disease Reference
CaR Familial Yad Hypocalciuric hypercalcemia and (51)
neonatal severe hyperparathyroidism
Mlvi-2 De novo (somatic?) Ya5 Associated with leukemia (52)
NF1 De novo Yab Neurofibromatosis (53)
PROGINS About 50% Yah Linked with ovarian carcinoma (54)
IL2RG Familial Ya5 XSCID (55)
ACE About 50% Yab Linked with protection from heart (35)
disease
Factor IX A grandparent Ya5 Hemophilia (56)
EYA1l De novo Ya5 Branchio-oto-renal syndrome (GY))
2 X FGFR2 De novo Ya5 & Yb8 Apert’s syndrome (41)
Cholinesterase One Japanese family Yb8 Cholinesterase deficiency (58)
APC Familial Ybh8 Hereditary desmoid disease (59)
Btk Familial Y X-linked agammaglobulinaemia (55)
C1 inhibitor De novo Y Complement deficiency (60)
BRCA2 De novo Y Breast cancer (61)
GK ? Y Glycerol kinase deficiency (62)

be found at the same locus in all of the great apes,
and 85% of the elements at specific loci can be found
in all monkeys. Our best estimates of Alu amplifica-
tion in the human genome are that there is one new
insert in about every 200 new births (4). Although
this is well below the peak rate, it is still high
enough to represent a significant factor in human
mutagenesis.

In addition to random mutations, which occur to
Alu elements after their insertion in the genome,
there are specific base changes that allow separation
of Alu elements into different subfamilies (5-10).
The different subfamilies were all inserted at differ-
ent stages of primate evolution. Almost all of the
insertions that have occurred specifically in the hu-
man genome come from four closely related subfam-
ilies, Alu 'Y, Ya5, Ya8, and Yb8. Ya5 and Yb8 inserts
represent the majority of the inserts and Alu Y in-
serts are relatively rare. All of the new inserts be-
long to a small group of the most recently created
subfamilies (see Table 1). This demonstrates that
only a small subset of Alus is capable of amplifica-
tion (11).

Several explanations for the selective amplifica-
tion of specific subfamilies have been proposed. One
likely explanation is that a few specific loci are ca-
pable of active amplification, while almost all other
loci are not, and that there are almost no such loci in
the older subfamilies (11). Alternatively, one has to
propose that loci from all subfamilies express, but
that the RNAs expressed from the newer subfami-

lies interact with the retroposition apparatus much
better than the older subfamily RNAs (12,13).

Alus AND L1 ELEMENTS

The other major mobile element in the human
genome is the L1 element. Alu elements are RNA
polymerase ITI-derived transcripts that have no cod-
ing capacity. Thus, they do not code for any proteins
that might be involved in the retroposition process.
L1 repeats, on the other hand, are much longer and
have two open-reading frames (reviewed in (14)).
One open-reading frame apparently codes for an
RNA-binding protein whose exact function is un-
known. The other open-reading frame codes for a
protein that includes domains for reverse transcrip-
tase, as well as for an endonuclease that apparently
nicks the genome at the site of insertion (15-17). An
assay that allows rapid L1 retroposition in cultured
cells has been devised recently (18). This assay fa-
cilitates the dissection of the details of the L1 ret-
roposition mechanism.

Alu elements must obtain the enzymes for their
retroposition from somewhere. In addition, there are
striking similarities between the mechanisms of Alu
and L1 retroposition that make it very attractive to
think that L1 elements may supply the necessary
components for Alu retroposition (15,16,19,20). This
idea is certainly very attractive, and thus the rate of
Alu retroposition may be very dependent on the rate
and evolution of L1 elements.
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Alu ELEMENTS: FUNCTIONAL ROLE OR A
PARASITE’S PARASITE

Alu repeats represent over 5% of the mass of the
human genome. They are also spread throughout
the entire genome, at varying densities. These ob-
servations, along with other specific properties of
the Alu elements have led to a number of hypothet-
ical functions for the Alu elements that might ex-
plain their ubiquitous presence in primate genomes.
Some of the proposed roles involve an everyday func-
tion for the cell, while others are of a more sporadic
nature.

The first role ever proposed for Alu elements was
that they might be origins of DNA replication (21).
This role is consistent with their high copy number
and dispersed nature, but has not been substanti-
ated by direct experimentation and seems like too
important a function to be served by an element that
is not found outside of primates.

More recently, evidence has been presented that
Alu RNAs may stimulate protein translation by in-
hibiting a RNA-dependent protein kinase, PKR (22—
24). Because Alu RNAs from many loci are stimu-
lated by a number of cellular stresses, such as viral
infection and heat shock, this would provide a mech-
anism by which dispersed sequences may contribute
to a cellular process as a group. If this is a function
of Alu elements, then it is likely to represent only a
slightly modified regulation seen in nonprimate spe-
cies that is filled by other RNAs or molecules in
those species.

Evidence has been presented in yeast that retro-
transposable elements may aid in healing chromo-
somal breaks (25,26). This suggests the possibility
that Alu and L1 elements may provide the same role
in the human genome.

There are several thoughts concerning the possi-
ble roles of Alu elements in the evolution of the
human genome. As discussed below, Alu elements
can lead to unequal recombination that results in
deletion or duplication of sequences. These events
could allow duplication of exons and therefore for-
mation of new protein variants. They can also con-
tribute to interchromosomal recombination that
may lead to cytogenetic alterations that are involved
in human speciation.

There are also several ways in which Alu re-
peats have been proposed to influence the evolu-
tion of gene expression. Because Alu elements are
rich in CpG dinucleotides that represent the sub-
strate for genomic methylation, Alu elements rep-

resent CpG-rich islands that make up about 30%
of the methylation sites in the human genome
(24). When an Alu element inserts in a new loca-
tion in the genome, it introduces a CpG island at
that new location. CpG islands have been associ-
ated with gene regulation, as well as imprinting of
genes, and therefore Alu elements may contribute
to the evolution of gene expression and imprinting
in the human genome. In addition, Alu elements
have been found to carry functional promoter ele-
ments for several of the steroid hormone receptors
(27,28). Thus, insertion of a new Alu element in
the vicinity of a gene may introduce new tran-
scription factor-binding sites that could alter the
regulation of gene expression. There are a number
of cases where elements that influence gene ex-
pression have been mapped to within an Alu re-
peat (29), demonstrating that the introduction of
these sequences can at least occasionally contrib-
ute to gene expression and regulation.

Although, there are numerous cases where indi-
vidual Alu elements have had a positive impact on
the human genome, it might be argued that none
of them has been confirmed as a function. In this
sense we would not define something that happens
in a positive sense every few thousand years as
being a function, because it would be occurring too
sporadically to apply a positive selection for the
presence of Alu elements. In addition, studies of
individual Alu elements demonstrate that there is
essentially no selective pressure on any given Alu
repeat, although it is possible that selection does
exist for a handful of master elements. Thus, it
has been argued that Alu and L1 elements may
both represent “selfish” DNA, or DNA that is only
working to replicate itself. Selfish DNA may often
have negative impacts on the host, but can be
tolerated if it does not have too strong an adverse
affect. Selfish DNA may also occasionally have
positive benefits, but only by chance, and not by
functional design. If L1 elements are essentially a
parasite within the human genome, and if Alu
relies on L1 elements for their amplification pro-
cess, then one might describe Alu as a “parasite’s
parasite.” - ’

Alus AS MARKERS FOR HUMAN
DIVERSITY

Although there is still a question as to whether
there is a true functional role for Alu elements in the
human genome, Alu elements have proved to be
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useful in studies of human DNA. The presence of
Alu repeats located ubiquitously throughout the hu-
man genome, but not in nonprimate species, has
allowed detection of human DNA sequences that
have been transfected into the cells of other organ-
isms, such as mice. This has been useful in marker-
rescue experiments in isolating a number of genes,
including the first examples of oncogenes isolated by
transforming rodent cell lines with human tumor
DNAs (30). More recently, inter-Alu PCR (31,32) has
found a broad range of uses in isolating specific
human DNA regions from mouse/human hybrid cell
lines and other complex sources containing large
segments of human DNA.

Recent Alu insertions have also proven useful in a
number of human population studies. In particular,
there are over 1000 Alu insertions that occurred
recently enough to be present only in a subset of
human chromosomes. Because there does not seem
to be any specific mechanism for removing Alu ele-
ments from the genome, once inserted they make a
very stable genetic marker (33,34). This observation,
along with the extremely low probability that any
two recently integrated elements have inserted in-
dependently in the same chromosomal location,
makes Alu insertions one of the best identical-by-
descent (IBD) markers for human evolution studies.
Any two individuals sharing an Alu insert almost
certainly do so because they share a common ances-
tor in which the insertion occurred. Table 1 includes
an example of an Alu insertion in the angiotensin-
converting enzyme (ACE) locus that shows a useful
association with protective advantages from heart
disease (85). Many other Alu insertion polymor-
phisms have been identified either in random
genomic loci or in specific genes, but without any
known disease association. These Alu insertions are
easy to assay for their presence or absence in a
chromosomal location and have been found to be
very powerful markers for human forensic and mo-
lecular anthropology studies (36,37).

RETROPOSITION OF Alu ELEMENTS
AND DISEASE

Alu elements are located throughout the genome
and in almost any location within a gene except
those in which they would totally disrupt the func-
tion of that gene. Figure 1 illustrates some of the
positions relative to a typical gene structure in
which Alu may land. Alus landing far enough up-
stream of a gene may have no influence on that

gene’s expression. However, Alus landing in or near
the promoter/enhancer regions of a gene have been
found to influence the expression of specific genes
(reviewed in (29)), as well as to have the general
potential to add transcription elements, like steroid
hormone receptor elements (27,28), to the upstream
gene region.

Very few Alu elements are found within the 5’
noncoding or coding regions of exons, presumably
because insertions in those locations are too disrup-
tive to gene function. There are a number of in-
stances where Alu elements have been found to be
part of the region coding for the carboxy-terminus of
a protein product (38,39). Presumably these Alus
insert far enough downstream in the coding se-
quence to result in a new carboxy-terminus that
does not disrupt the structure of the protein.

Insertions into the 3’ noncoding regions of genes
are found commonly and appear to have few nega-
tive affects. Similarly Alus are commonly found in
introns, demonstrating that Alu insertions in much
of the intronic region do not alter gene function
significantly.

The vast majority of Alu insertions that have led
to human disease insert into coding exons, or into
introns relatively near an exon and presumably al-
ter splicing. Table 1 is a list of the genetic defects
that are thought to be caused by Alu insertion
events. Not all of these cases have been demon-
strated to be directly causative for the disease, but
the rarity of Alu insertion events, coupled with the
lack of other detectable mutations in these cases,
strongly indicates that these are the causative
events. The ACE insertion (35,40) is likely to be one
example, however, that shows association with dis-
ease, but is highly unlikely to be the causative event.

The above examples demonstrate that Alu inser-
tions are capable of causing genetic defects which
lead to human disease. Examples of this type are
being found at an increasing frequency as the tools
for genetic analysis allow more mutations to be de-
tected. Finding 16 Alu-based insertion mutations in
the Human Genetic Mutation Database that con-
tains 14374 characterized human mutations sug-
gests that Alu elements contribute to approximately
0.1% of human genetic diseases. This number agrees
well with a previous calculation based on a similar
dataset of mutations where Alu and L1 insertions
were estimated to each contribute approximately
0.075% of human mutations (16). In some cases, the
insertional mutagenesis may make detection of mu-
tations easier, biasing the results in favor of the
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FIG. 1. Schematic of Alu-induced damage to the human genome. Panel A illustrates some of the potential consequences of insertion
of a new element in the vicinity of a gene. The colored boxes represent various exons of the gene. The red arrows show existing Alu
elements oriented in different directions in the introns of the gene. Depending on the site of insertion, the Alu element has varied
probability of impact on the genome as shown. Panel B illustrates an unequal, homologous recombination occurring between two Alu
elements in different introns of a gene. The arrows broken by dotted lines show the path of the recombination event. The genes below show
that one copy will have a deletion while the other will duplicate gene sequences. Either is likely to be deleterious.

detection of Alu insertions. However, many muta-
tion detection strategies are designed to identify
point mutations, particularly in coding regions, and
may overlook insertions, particularly if they occur in
introns. In addition, many new mobile element in-
sertions may be lethal during embryogenesis. There-
fore, it is likely that these estimates of insertion
frequencies are underestimates of the true contribu-
tion of new Alu insertions to human disease.

We expect that with increasing study of muta-
tions, it will be found that some genetic diseases are

more likely than others to result from retroposon
insertion. It has certainly been observed that some
genes have a much higher Alu repeat content, mak-
ing it reasonable that they will have a higher fre-
quency of disabling Alu insertions. It has been ob-
served that 2 out of 258 mutations in the FGFR2
gene were caused by Alu insertions (41). This is the
first case of multiple Alu insertion mutations being
detected associated with a single disease, suggesting
that this genetic locus may be more susceptible to
retroposon insertions than other regions of the ge-




188 DEININGER AND BATZER

TABLE 2
Alw/Alu Recombination and Germ-Line Disease
Locus Distribution Disease Reference
8 X LDLR Kindreds Hypercholesterolemia (63-67)
5 X a-globin Kindreds a-thalassaemia (68-71)
5 X C1 inhibitor Kindred Angioneurotic adema (60,72)
Lys Hydrox. Kindreds Ehlers-Danlos syndrome (73)
DMD Kindred Duchenne’s muscular dystropy (74)
ADA One patient ADA deficiency-SCID (75)
Apo B One patient Hypo-betalipoproteinemia (76)
Ins. Rec. B One patient Insulin-independent diabetes 7
a-gal A One patient Fabry disease (78)
HPRT One patient Lesch-Nyhan syndrome 79)
Plat. Fibrinogen Receptor Kindred Glanzmann thrombasthenia 80)
Phosphorylase kinase One patient Glycogen storage disease (81)
GALNS One patient Mucopolysaccharidosis type IVA (82)
Antithrombin One patient Thrombophilia (83)
XY One patient XX male (84)
B-HEXA Classic form of disease Tay Sachs (85)
C3 Kindred C3 deficiency (86)
HEXB 27% of patients Sandhoff’s disease 87

nome. However, the number of insertions found so
far is still fairly low making more definitive conclu-
sions difficult.

RECOMBINATION BETWEEN Alu
ELEMENTS ASSOCIATED WITH DISEASE

In addition to the potential impact of Alu element
insertions in causing human disease, their disper-
sion throughout the genome provides ample oppor-
tunity for unequal homologous recombination which
leads to a much higher level of mutations. Figure 1B
illustrates how this unequal recombination can
cause insertion or deletion mutations. When recom-
bination occurs between Alu elements on the same
chromosome, the result is that there is either dupli-
cation or deletion of the sequences between the Alus.
Recombination may also occur between Alu ele-
ments on different chromosomes, resulting in chro-
mosomal translocations or more complex chromo-
somal rearrangements.

Table 2 presents a compilation of Alu/Alu recom-
bination events that have contributed to germ-line
disease with Alu-based recombination events asso-
ciated with cancer shown in Table 3. There are many
more recombination than insertion events contrib-
uting to disease and the table of recombination
events is not intended to be exhaustive in presenting
all of the Aluw/Alu recombinations that have contrib-
uted to human disease. In addition, there are many

recombination events that occurred between an Alu
element and some other non-Alu-related sequence
which may have been influenced by the presence of
the Alu element (42). Although single Alu elements
may contribute specifically to such recombination
events, we have made no efforts to collect those data.
The mutations resulting from Alu/Alu recombina-
tion include 33 mutations that are the result of
germ-line recombination and 16 mutations that are
the result of somatic events that led to cancer. Based
on the calculations in the previous section, the germ-
line recombination mutants would represent about
0.3% of mutants characterized. We expect that this
number is an underestimate as mutation schemes
aimed at detecting point mutants would often be
expected to overlook large duplication and deletion
events, and we have probably not reported all known
Alu/Alu recombinations in the tables.

The data in Tables 2 and 3 show that Aluw/Alu
recombination events are highly biased towards spe-
cific genes. The first to show evidence for this was
the LDLR gene, which has at least eight indepen-
dent cases. It was also reported that these recombi-
nation events appeared to take place in a preferred
location within the Alu element (42,43). These data
suggested that Alu elements may represent hot
spots for recombination by a mechanism that was
more than simple homologous recombination. Mul-
tiple Alu/Alu recombination events have also oc-
curred in the germ line involving two other genes.
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TABLE 3
Aluw/Alu Recombination and Cancer
Locus Distribution Disease Reference
10 X ALL-1 (MLL) Somatic Acute myelogenous leukemia (88-90)
2 X BRCA1 Somatic and kindreds Breast cancer (91,92)
MLH1 Two kindreds HNPCC (93)
TRE Somatic Ewing’s sarcoma (94)
RB Common Association with glioma (95)
EWS Subset of Africans Protective against Ewing sarcoma? (96)

Even more striking is the preferential recombina-
tion seen in somatic recombination. The All-1 gene
which participates in a high proportion of acute leu-
kemias is another hotspot for Alu/Alu recombina-
tion. This includes intragenic recombination which
is the major cause of acute myelogenous leukemia in
individuals without a cytogenetic defect, as well as a
possible contribution to recombination between the
All-1 gene and other chromosomal loci in causing
more complex cytogenetic defects associated with
leukemia (44—46).

The genes that show high levels of Alu/Alu recom-
bination tend to have a large number of Alu se-
quences. Although Alu density may help contribute
to this recombination, the correlation does not seem
to hold up upon analysis of other Alu-rich genes.
Therefore, it seems likely that some other factor
contributes to the high recombination rates seen in
these genes and that the Alu elements are likely to
help in that process rather than to be the primary
cause.

It has generally been found that longer stretches
of sequence identity allow more efficient homologous
recombination and that 300 bp of imperfect se-
quence identity would represent a relatively ineffi-
cient target (47). Therefore, as Alu elements accu-
mulate random mutations after integration in the
genome their recombination potential gradually de-
creases. Thus, early in primate evolution when a
high proportion of Alu elements were closer matches
to one another, Alu/Alu recombination may have
contributed even more to the evolution and reshap-
ing of primate genomes.

Based on the above considerations, one might ex-
pect the much longer L1 family of elements to con-
tribute significantly to recombination, as well. Sur-
prisingly, we are familiar with only two L1/L1
recombination events in the human genome (48).
Therefore, it would appear that: (1) L1 elements are
located in less recombinogenic regions of the human

genome; (2) the approximately 10-fold lower copy
number of L1 elements is more than enough to offset
their larger size in terms of probabilities of recom-
bination; (3) some basic property of the Alu elements
themselves makes them recombinogenic; or (4) the

. larger average spacing between L1 elements causes

the vast majority of L.1/L.1 recombination events to
be lethal. It is possible that all of these factors may
contribute to this observed difference. Transient
transfection experiments suggest that the third pos-
sibility may not be true since Alu sequences did not
recombine more frequently than other control se-
quences (49). However, in their native chromatin
environment, or in specific cell types or cell stimuli
in vivo, Alus may still respond with higher recombi-
nation rates. We believe that the fourth possibility
may be the dominant factor, however. The vast ma-
jority of Alu/Alu recombination events listed in the
tables represent recombination between Alu ele-
ments within the same gene. This limits the effect of
the recombination to a single gene defect. With their
lower copy number and tendency to be located be-
tween genes rather than in genes, L1/L1 recombina-
tion events are likely either to involve only inter-
genic regions or to involve a much larger region that
may cause defects in several genes simultaneously,
resulting in loss of viability.

There is growing evidence that repetitive DNAs
contribute to disease either through the mutations
they cause during the retroposition process that
forms them (16,50) or through recombination pro-
cesses involving unequal cross-overs of repetitive
elements. These recombination events may involve
repetitive sequences of various repetition frequen-
cies with the likelihood that longer and more perfect
repeats that are near one another probably recom-
bine well, while short, mismatched repeats (like Alu)
recombine relatively poorly. However, the extremely
high copy number of Alu elements makes them a
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major factor in the molecular basis of human dis-
eases.
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Abstract

Alu elements undergo amplification through retroposition and integration into new locations throughout primate
genomes. Over 500,000 Alu elements reside in the human genome, making the identification of newly inserted Alu
repeats the genomic equivalent of finding needles in the haystack. Here, we present two complementary methods
for rapid detection of newly integrated Alu elements. In the first approach we employ computational biology to
mine the human genomic DNA sequence databases in order to identify recently integrated Alu elements. The
second method is based on an anchor-PCR technique which we term Allele-Specific Alu PCR (ASAP). In this
approach, Alu elements are selectively amplified from anchored DNA generating a display or “fingerprint’ of
recently integrated Alu elements. Alu insertion polymorphisms are then detected by comparison of the DNA
fingerprints generated from different samples. Here, we explore the utility of these methods by applying them
to the identification of members of the smallest previously identified subfamily of Alu repeats in the human
genome termed Ya8. This subfamily of Alu repeats is composed of about 50 elements within the human genome.
Approximately 50% of the Ya8 Alu family members have inserted in the human genome so recently that they are
polymorphic, making them useful markers for the study of human evolution.

Introduction ments and by recombination between Alu elements
(reviewed in Deininger & Batzer, 1999). Previous

Alu repeats are the most successful class of mo- estimates indicate that retroposition of Alu elements

bile elements in the human genome. Alu elements
spread through the genome via an RNA mediated
amplification mechanism termed retroposition and re-
viewed in Deininger and Batzer, 1993. There are over
500,000 Alu elements in the human genome, which
have clearly played a major role in sculpting and/or
damaging the genome. Alu elements have contrib-
uted to genetic disease, both by the disruption of
genes through the insertion of newly retroposed ele-

contributes to approximately 0.1% of human genetic
diseases and recombination between Alu repeats con-
tributes to another 0.3% of genetic diseases (Deininger
& Batzer, 1999). Therefore, the spread of the Alu
family of mobile elements has generated a significant
amount of human genomic variation as well as dis-
eases through recombination-based fluidity as well as
insertional mutagenesis.



150

Alu repeats are distributed rather haphazardly
throughout the human genome. Alu elements began
expanding in the ancestral primate genomes about 65
mya (Shen, Batzer & Deninger, 1991) reaching a
peak amplification between 35 and 60 mya. Presently,
Alu elements amplify at a rate that is 100 fold lower
than their peak rate, with an estimate of one new Alu
insert in every 100-200 births (Deininger & Batzer,
1993, 1995). Evolutionary studies have demonstrated
that the majority of evolutionarily recent Alu inserts
have specific diagnostic sequence mutations (Dein-
inger & Batzer, 1993, 1995). These mutations have
accumulated in Alu elements throughout primate evol-
ution resulting in a hierarchical subfamily structure, or
lineage, of Alu repeats. The mutations facilitate the
classification of Alu elements into different subfamil-
ies, or clades, of related elements that share common
diagnostic mutations (reviewed in Batzer, Schmid &
Deninger, 1993; Batzer & Deininger, 1991; Batzer
etal., 1996a). Almost all of the recently integrated Alu
elements within the human genome belong to one of
four closely related subfamilies: Y, Ya5, Ya8, and Yb8,
with the majority being Ya5 and Yb8 subfamily mem-
bers. Collectively, these subfamilies of Alu elements
comprise less than 10% of the Alu elements present
within the human genome with the Ya5/8 and YbS8
subfamilies collectively accounting for less than half
of a percent of all Alu elements. These evolutionarily
recent Alu insertions are useful for human population
studies, since there appears to be no specific mechan-
ism to remove newly inserted Alu repeats, and the Alu
elements are identical by descent with a known ances-
tral state (Batzer et al., 1991, 1994a, 1996a; Stoneking
etal., 1997; Perna et al., 1992).

Previously, it has been technically impossible to
determine the full impact of mobile elements on the
human genome. The identification of newly inser-
ted Alu elements has been very difficult due to the
complexity of detecting one new Alu insertion in a
cell that already has 500,000 pre-existing Alu ele-
ments. We have previously utilized laborious library
screening and sequencing strategies to isolate relat-
ively small numbers of Alu insertion polymorphisms
(Arcot et al., 1995a, b, ¢; Batzer & Deininger 1991a;
Batzer et al., 1990, 1991b; 1995), as well as investigat-
ing rare 300 bp restriction fragment length polymorph-
isms (Kass et al., 1994). This makes these studies
the genomic equivalent of the search for needles in
the haystack. In this paper, we discuss two altern-
ative methods that overcome the inherent difficulties
in these experiments, making these studies manage-

able. First, the availability of large quantities of hu-
man genomic DNA sequence provided by the Human
Genome Project facilitates genomic database mining
for recently integrated Alu elements. This approach
should prove useful in determining the chromosome-
specific and genome wide dispersal patterns of mo-
bile elements, as well as for the identification of
polymorphic mobile element fossils to apply to the
study of human population genetics and primate com-
parative genomics. Secondly, we have developed a
PCR-based method that we term Allele-Specific Alu
PCR (ASAP). This technique allows us to take ad-
vantage of the subfamily-specific diagnostic mutations
within Alu mobile elements to isolate and display
recently integrated Alu repeats from different DNA
samples, allowing for direct comparisons of the Alu
content of different genomes or different cells from an
individual.

Materials and methods

Cell lines and DNA samples

The cell lines used to isolate human DNA samples
were as follows: human (Homo sapiens), Hela
(ATCC CCL2); chimpanzee (Pan troglodytes), Wes
(ATCC CRL1609), gorilla (Gorilla gorilla), Ggo-1
(primary gorilla fibroblasts) provided by Dr. Stephen
J. O’Brien, National Cancer Institute, Frederick, MD,
USA. Cell lines were maintained as directed by the
source and DNA isolations were performed using Wiz-
ard genomic DNA purification (Promega). Human
DNA samples from the European, African Amer-
ican and Greenland native population groups were
isolated from peripheral blood lymphocytes (Ausubel
et al., 1996) that were available from previous stud-
ies (Stoneking et al., 1997). Egyptian samples were
collected from throughout the Nile river valley region
and DNA from peripheral lymphocytes was prepared
using Wizard genomic DNA purification kits (Pro-
mega). Human DNA used for ASAP was isolated from
peripheral lymphocytes utilizing the super-quick gene
method (Analytical Genetic Testing Center).

Computational analyses

A schematic overview summarizing the computational
analyses of recently integrated Alu elements is shown
in Figure 1. Initial screening of the GenBank non-
redundant and high throughput genomic sequence
(HTGS) databases was performed using the basic local
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Figure 1. Computational analysis of repetitive elements. The flow
chart shows the computational tools utilized for the identifica-
tion and analysis of recently integrated Ya8 Alu family members.
The process begins with BLAST searches of the non-redundant
and high-throughput genomic sequence databases. Subsequently
sequences (about 1000 nucleotides) adjacent to the matches with
100% identity to the query sequence are annotated using the Repeat-
Masker2 or Censor server. Following sequence annotation, oligo-
nucleotide primers complementary to the unique DNA sequences
adjacent to each element are designed using the Primer3 web server.
The oligonucleotides designed using Primer3 are then subjected to a
second BLAST search to determine if they reside in other repetitive
elements, and subsequently they are used for PCR based analyses of
individual mobilé elements.

alignment search tool (BLAST) (Altschul et al., 1990)
available from the National Center for Biotechno-
logy Information (http://www.ncbi.nlm.nih.gov/). The
database was searched for exact complements to the
oligonucleotide 5'-ACTAAAACTACAAAAAATAG-
3’ that is an exact match to a portion of the Alu
Ya8 subfamily consensus sequence containing unique
diagnostic mutations. Sequences that were exact com-
plements to the oligonucleotide were then subjec-
ted to more detailed annotation. A region composed
of 1000 bases of flanking DNA sequence directly
adjacent to the sequences identified from the data-
bases that matched the initial GenBank BLAST query
were subjected to annotation using either Repeat-
Masker2 from the University of Washington Genome
Center server (http:/ftp.genome.washington.edu/cgi-
bin/RepeatMasker) or Censor from the Genetic In-
formation Research Institute (http://www.girinst.org/
Censor_Server-Data_Entry_Form_s.html) (Jurkaetal.,
1996). These programs annotate the repeat sequence
content of DNA sequences from humans and rodents.

Primer design and PCR amplification

PCR primers were designed from flanking unique
DNA sequences adjacent to individual Ya8 Alu ele-
ments using the Primer3 software (Whitehead In-
stitute for Biomedical Research, Cambridge, MA,
USA) (http://www.genome.wi.mit.edu/cgi-bin/primer
/primer3_www.cgi). The resultant PCR primers were
screened against the GenBank non-redundant data-
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base for the presence of repetitive elements using
the BLAST program, and primers that resided within
known repetitive elements were discarded and new
primers were designed. PCR amplification was car-
ried out in 25 pl reactions using 50-100 ng of target
DNA, 40 pM of each oligonucleotide primer, 200 uM
dNTPs in 50mM KCIl, 1.5mM MgClp, 10mM Tris—
HCI pH 8.4 and Tag® DNA polymerase (1.25U) as
recommended by the supplier (Life Technologies).
Each sample was subjected to the following ampli-
fication cycle: an initial denaturation of 2:30 min at
94°C, 1min of denaturation at 94°C, 1 min at the
annealing temperature, 1 min of extension at 72°C,
repeated for 32 cycles, followed by a final extension
at 72°C for 10 min. Twenty microliters of each sample
was fractionated on a 2% agarose gel with 0.25 pg/ml
ethidium bromide. PCR products were directly visu-
alized using UV fluorescence. The sequences of the
oligonucleotide primers, annealing temperatures, PCR
product sizes and chromosomal locations are shown in
Table 1. Phylogenetic analysis of all the Alu elements
listed in Table 1 was determined by PCR amplifica-
tion of human and non-human primate DNA samples.
The human genomic diversity associated with each
element was determined by the amplification of 20
individuals from each of four populations (African—
American, Greenland Native, European and Egyptian)
(160 total chromosomes). The chromosomal location
of Alu repeats identified from clones that had not been
previously mapped was determined by PCR amplifica-
tion of National Institute of General Medical Sciences
(NIGMS) human/rodent somatic cell hybrid mapping
panel 2 (Coriell Institute for Medical Research, Cam-
den, NJ).

Allele-Specific Alu PCR (ASAP)

We used a modification of the IRE-Bubble PCR
method (Munroe et al., 1994), utilizing the same amp-
lification (anchor) primer, but altering the annealed
anchor/linker primers. The annealed linkers formed
a Y instead of a bubble to avoid end-to-end liga-
tion. Also, instead of blunt-end digestion, genomic
DNA was digested with Msel; that cuts 5-T'TAA-
3’ and does not cut in the Alu consensus. Oth-
erwise the genomic-anchor ligations were prepared
according to (Munroe et al., 1994). The annealed
linker primers are: MSET: 5-TAGAAGGAGAGG-
ACGCTGTCTGTCGAAGG-3’ and MSEB: 5-GAG-
CGAATTCGTCAACATAGCATTTCTGTCCTCTCC
TTC-3’. The amplification (linker) primer is: LNP:
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5"GAATTCGTCAACATAGCATTTCT-3'. We placed
an EcoRlI site at the 5" end of the primer for the option
of cloning PCR products into cloning sites of common
vectors. No bands are observed on a gel when this
primer is used alone with the anchored template at an
annealing temperature of 55°C.

Unless otherwise noted, PCR conditions (for
all ASAP reactions) were performed in 20l us-
ing a Perkin-Elmer 9600 thermal cycler with the
following conditions: 1 x Promega buffer, 1.5mM
MgClp, 200puM dNTPs, 0.25uM primers, 1.5U
Taq polymerase (Promega) at 94°C — 2min, 94°C
— 20s, 62°C - 20s, 72°C - 1min, 10s, for
5 cycles; 94°C — 20s, 55°C - 20s, 72°C -
1min, 10s, for 25 cycles; 72°C — 3min. Nested
Alu primers were used that move along the Alu
in an upstream direction as follows: ASII (Ya5-
specific): 5'-CTGGAGTGCAGTGGCGG-3'; HS18R
(Ya8-specific): 5-CTCAGCCTCCCAAGTAGCTA-
3’; HS16R (Ya8-specific): 5'-CGCCCGGCTATTTTT-
GTAG-3'.

The ASII primer has Ya5 diagnostic nucleotides
(present in both Ya5 and Ya8 subfamilies). In the
first round of PCR, stock genomic DNA (2.4ng
anchored DNA) was used as the template. For sub-
sequent rounds of amplification, PCR products were
purified through microcon-30 (Amicon) columns us-
ing two centrifuge spins following the addition of
400 1 of water. For the second round of amplification,
1wl of microcon-purified first round PCR reaction
was used as the template, and for the third round
1 wl of microcon-purified second round PCR products
was used. For display analysis (see below) the PCR
products were ‘equalized’ in volume following micro-
con purification.

Display of anchor-Alu PCR products

Third round PCR was performed utilizing a 5" end-
labeled primer incorporating [y-32P] ATP (Amer-
sham) with T4 polynucleotide kinase (New England
BioLabs). PCR conditions were as above with the
exception of using 0.188uM of each Ya8 and LNP
cold primers and 0.075 wM of end-labeled Ya8 primer.
Anchor-PCR and end-labeled molecular weight mark-
ers ($X174 DNA digested with Hinfl; Promega) were
separated by electrophoresis on denaturing 5% long
ranger (AT Biochem) gels, and examined by autora-
diography following exposure to Amersham Hyper-
film at room temperature. DNA samples from different
ethnic groups were utilized in the display to identify
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variants that resulted from recent Alu insertion events
(polymorphism).

Verification of PCR generated DNA fragments as Ya8
products

Gels were aligned to autoradiographs by either small
cuts in various parts of the gel, or placement of low-
level radioactive dye on the gel prior to re-exposure.
Bands were then sliced out of the gels, placed in
200 1 of water and eluted by heating at 65°C for
15min. Samples were re-amplified with third round
PCR primers, cloned and sequenced as described
above. Following verification these bands were amp-
lified by the third round primer pair, new nested
oligonucleotides based on the flanking unique se-
quences were designed to move, by PCR, downstream
through the Alu element to the opposite flank. An-
nealing temperatures were adjusted to reflect the Tm
of the oligonucleotide primers. Generally two or three
rounds of PCR were utilized to obtain the 3’ flanking
sequences of the Alu. These PCR products were also
cloned and sequenced in the same manner.

Results

We present two complementary approaches that facil-
itate rapid detection of newly inserted Alu elements
from the human genome. First, computational ana-
lyses of human genomic DNA sequences from the
GenBank database are used in the identification of re-
cently integrated Alu elements. Second, allele-specific
PCR amplification is used for the selective enrich-
ment of young Alu elements. To compare and contrast
these two approaches, we present the data obtained
when these methods are applied to the identification
of members of the Ya8 Alu subfamily, the smallest
previously reported subfamily of Alu repeats in the
human genome.

Copy number and sequence diversity

In order to estimate the copy number of Ya8 Alu
family members, we determined the number of ex-
act matches to our subfamily specific oligonucleotide
query sequence as a proportion of the human gen-
ome that had been sequenced in the non-redundant
database. We obtained 27 matches to the subfam-
ily specific query sequence from the non-redundant
database. Upon further sequence annotation using the
RepeatMasker2 web site, five matched the Ya8 Alus
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previously sequenced in our laboratories (Batzer et al.,
1990; Batzer & Deininger, 1991; Batzer et al., 1995).
Eight of the elements identified in the search were
classified as Alu Sx subfamily members, and two
matched the TPA 25 Ya8 Alu family member. A total
of 13 independent Ya8 Alu elements were identified
from the search of the non-redundant database that
were not sequenced as part of a project to specific-
ally identify recently integrated Alu elements. The
non-redundantdatabase contained 45.3% human DNA
sequences for a total of 590,140,703 bases of human
sequence on the date of the search. The estimated
size of the Ya8 subfamily is (3 x 10° bp/590, 140,
703bp) x 13 unique Ya8 matches = 66 Ya8 subfamily
members. This estimate compares favorably with that
of 50 previously reported based upon library screen-
ing, restriction digestion or Southern blotting (Batzer
etal., 1995). An additional six matches to the Ya8 sub-
family query sequence were identified in the HTGS.
One of these elements was an Alu Sq subfamily mem-
ber, while a second element was a duplicate copy of
Ya8NBC60. PCR analyses of two elements identi-
fied in the high throughput database, Ya8NBC7 and
Ya8NBC16 (GenBank accession numbers AL109937
and AC008944), were inconclusive and these elements
were eliminated from further analysis. These two ele-
ments were identified from low pass first sequence
runs in the HTGS database. It is not surprising that
the PCR analyses failed, since the DNA sequences
are of presumably lower quality than finished DNA
sequences contained in the non-redundant database.
However, two additional Ya8 Alu repeats (YaSNBC8
and Ya8NBC15) were identified in the HTGS database
and subjected to further analysis.

A comparison of the nucleotide sequences of all of
the Ya8 Alu family members is shown in Figure 2. In
order to determine the time of origin for the Ya8 sub-
family we divided the nucleotide substitutions within
the elements into those that have occurred in CpG di-
nucleotides and those that have occurred in non-CpG
positions. The distinction between types of mutations
is made because the CpG dinucleotides mutate at a rate
that is about 10 times faster than non-CpG positions
(Labuda & Striker, 1989; Batzer et al., 1990) as a
result of the deamination of 5-methylcytosine (Bird,
1980). A total of 14 non-CpG mutations and 8 CpG
mutations occurred within the 14 Alu Ya8 subfamily
members reported. Using a neutral rate of evolution
for primate intervening DNA sequences of 0.15%
per million years (Miyamoto, Slightom & Goodman,
1987) and the non-CpG mutation rate of 0.413%

AluYa8 Con GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGE 59
AluYa8NBC1
AluYa8NBCZ ..
AluYaB8NBC3
AluYa8NBC4
AluYaBNBCE .
AluYaBNBC8
AluYaBNBC10 .
AluYa8NBC11 .
AluYa8NBC12 .
AluYa8NBC13 .
AluYaBRBC14 .
AluYaBNBC1S .
AluYa8NBC17 .
AluYa8NBC60 .

AluYa8 Con ATCACGAGGTCAGGAGATCGAGACCATCCCGGCTAAARCGGTGAAACCCCGTCTCTACT 118
AluYa8NBC] B R R TR R RS Toveneenas

AluYaBNBC2 . e
AluYaBNBC3 .
AluYa8BBC4 .
AluYaBNBC6 .
AluYa8NBCE
AluYa8NBC10 .
AluYaBNBC1l .
AluYaBNBCi2 .
AluYaBNBC13 .
AluYaBNBC14 .
AluYa8NBC15 .
AluYa8KBC17 ...
AluYa8KBCEO ...

AluYa8 Con
AluYaBNBCT ...
AluYaB8NBC2 ...
AluYaBNRC3 ...
AluYaSNBC4 ...
AluYa8NBCE ...
AluYaBNBCS ...
AluYaBNBC10 ...
AluYaBNBC11 .
AluYa8NBC12 .
AluYya8NBC13 .
AluYa8NBC14 .
AluYaBNBC15 .
AluYa8NBC17 ...
AluYaBNBCEO ...

AluYa8 Con GGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGCGGAGCTTGCAGTGAGCCGAGATCCC 237
AluYa8NBCl ....

AluYa8NBC2 ....
AluYaBNBC3 .
AluYa8NBC4 .
AluYa8NBCE .
AluYa8NBC8 .
AluYa8NBC10 .
AluYaBNBC1l .
AluYaBNBC12 .
AluYaBNBC13 .
AluYaBNBC14 .
AluYa8NBC15 .
AluYa8NBC17 ....
AluYa8NBC60 ....

AluYaB Con GCCACT!
AluYaBNBC1 ....
AluyaBNBCZ2 ,.G.
AluYaBNBC3 A
AluYaBNBC4 .
AluYaBNBC6 .
AluYaBNBCB .
AluYa8NBC10 .
AluYa8NBC11 .
AluYa8NBC12 .
AluYa8NBC13 .
AluYaBNBC1d .
AluYaBNBC15 .
AluYaBNBC17 ....
AluYaBNBC60 .

Figure 2. Multiple alignment of Ya8 subfamily members. The
Ya8 subfamily consensus (con) is derived from the most common
nucleotide found at each position within the subfamily members.
Nucleotide substitutions at each position are indicated with the
appropriate nucleotide. Deletions are marked by ‘-’

(14/3388 using only non-CpG bases) within the 14
Ya8 Alu elements yields an estimated age of 2.75 mil-
lion years old for the Ya8 subfamily members. This
estimate of age is somewhat higher than the 660,000
years previously reported (Batzer et al., 1995). How-
ever, the previous study of Ya8 Alu family members
involved only four elements making the calculated age
more subject to random statistical fluctuation. This es-
timate is also consistent with the expansion of a family
of mobile elements that began around the time humans
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Ya8NBCI GA AGAG [Al]l Ay  AAGAGGGGGAGAG
Ya8NBC2 GGA  [Al] A CA, TGGA

Ya8NBC3 GAAGAAGTTTTGC  [Al] ACA;CA; GAAGAAGTTTTGC
Ya8NBC4 CGACAATTT  [Al] A;CAiCAie CCGACAATIT

Ya8NBC6 AAATTTAAAATATT  [Alu] Ay AAATTTAAAATATT

Ya8NBC8 AAGAAAATATAGGCATA  [Aly] A, CAyCA: AAGAAAATATAGGCATA
Ya8NBCIO AAAAATAAAATA [Alu] A,  AAAAATAAAATA

Ya8NBCH AAGGAATGAGACTG  [Als] Az  AAGGAATGAGACTG
Ya8NBC12 AAAGTTCTTTGCA  [Ali] An  AAAGTTCTTTGCA

Ya8NBC13 AAGAAGGCTTCACCAG  [AN] Aw  AAGAAGGCTTCACCAG
Ya8NBCI4 ATCCC  [Alu] Ay  ATCCC

YasNBC15
Ya8NBC17
Ya8NBC60

AGAACCACCAGGAA  {Aly] Ay AGAACCACCAGGAA
AAGGAATCTC  [Ale)  Ap AAGGAATCTC
GGTAAATAAGCTTICTT  [Alu] Ay GGTAAATAAGCTTTCTT

Figure 3. Nucleotide sequences flanking Ya8 subfamily members.
Nucleotide sequences flanking the Ya8 Alu family members are
shown. Nucleotides encompassed in the direct repeats are under-
lined. The length of the oligo-dA rich tail is denoted by an (A) and
a subscript indicating the number of adenine residues.

and African apes diverged, which is thought to have
occurred 4-6 million years ago (Miyamoto, Slightom
& Goodman, 1987).

Inspection of the nucleotide sequences flanking
each Ya8 Alu family member shows that all of the
elements were flanked by short perfect direct repeats
(Figure 3). The direct repeats ranged in size from 3-
17 nucleotides. These direct repeats are fairly typical
of recently integrated Alu family members. Two of
the Alu Ya8 Alu family members contained 5" trun-
cations (Ya8NBC2 and Ya8NBC11). Since YaSNBC2
and Ya8NBCI11 are both flanked by perfect direct
repeats the truncations in these elements probably oc-
curred as a result of incomplete reverse transcription
or improper integration into the genome rather than by
post-integration instability. All of the Ya8 Alu family
members had oligo-dA rich tails that ranged in length
from a minimum of four nucleotides to over 40 bases
in length. It is also interesting to note that the 3" oligo-
dA rich tails of several of the elements (YaSNBC2,
Ya8NBC3, Ya8NBC4, and Ya8NBC8) have accumu-
lated random mutations beginning the process of the
formation of simple sequence repeats of varied se-
quence complexity. The oligo-dA rich tails and middle
A rich regions of Alu elements have previously been
shown to serve as nuclei for the genesis of simple
sequence repeats (Arcot et al., 1995b).

Phylogenetic distribution, and chromosomal location

The phylogenetic distribution of each Ya8 Alu element
was determined by amplifying genomic DNA from
two non-human primates (common chimpanzee and
gorilla). All of the Ya8 Alu family members were ab-
sent from the genomes of non-human primates. This
suggests that the majority of these elements dispersed
within the human genome sometime after the human
and African ape divergence. The chromosomal loca-
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tion of each Ya8 Alu element was taken directly from
the GenBank database entry or determined by PCR
amplification of human/rodent monochromosomal hy-
brid cell line DNA samples (Table 1).

Human genomic diversity

In order to determine the human genomic variation
associated with each of the Ya8 Alu family members
we subjected a panel of human DNA samples to PCR
amplification (Table 2). The panel was composed of
20 individuals of European origin, African Americ-
ans, Greenland Natives and Egyptians for a total of 80
individuals (160 chromosomes). Using this approach
four of the 14 (Ya8NBC8, Ya8NBC10, Ya8NBC14
and Ya8NBC15) Alu Ya8 subfamily members were
monomorphic for the presence of the Alu element
suggesting that these elements integrated in the gen-
ome prior to the radiation of modern humans from
Africa. Three of the elements (Ya8NBC2, Ya8NBC13
and Ya8NBC17) appeared heterozygous in all of the
individuals that were analyzed, suggesting that they
had integrated into previously undefined repetitive
elements within the human genome as previously de-
scribed (Batzer et al., 1991). However, the remaining
seven elements were polymorphic for the presence of
an Alu repeat within the genomes of the test panel in-
dividuals (Table 2). The unbiased heterozygosity val-
ues (corrected for small sample sizes) for these poly-
morphic Alu insertions were variable, and approached
the theoretical maximum in several cases. This is quite
interesting since the maximum uncorrected heterozy-
gosity for these biallelic elements is 50% and suggests
that these Alu insertion polymorphisms will make ex-
cellent markers for the study of human population
genetics. In addition, 50% of the randomly identified
Ya8 Alu family members are polymorphic. These res-
ults suggest that the Ya8 subfamily is younger than
either the Ya5 (from which Ya8 was derived) or Yb8
Alu subfamilies, since only 25% of the members of
these Alu subfamilies are polymorphic in the human
genome (Batzer et al., 1995).

Allele-Specific Alu PCR (ASAP)

Although database screening is extremely efficient for
identifying recent Alu elements, it will not allow iden-
tification of new elements from genomes not included
in the sequencing efforts. Our primary objective with
the ASAP technique is to rapidly identify newly in-
serted Alu elements from a background of 500,000
older Alus. To accomplish this feat, we utilized a
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Nested Allele-Specific Alu PCR

Figure 4. The Allele-Specific Alu PCR (ASAP) anchor strategy.
Schematic diagram of the technique for the isolation of a designated
subset of Alu repeats based on a modification of the IRE-bubble
PCR technique (Munroe et al., 1994). The shaded rectangle repres-
ents an Alu sequence in genomic DNA. The Msel (or an alternative
restriction enzyme) cleaves in unique sequences flanking the Alu
repeat (small arrows). The anchors with the complementary Msel
site are ligated. The anchors are designed so that the two oligonuc-
leotide strands base-pair only at the Msel site end, but not at the
other end (represented here schematically with four arbitrary bases).
PCR is initiated using an allele-specific Alu primer (Z'). The anchor
primer will not be able to base pair preventing anchor-to-anchor
amplification. Only those fragments (a) generated by the Alu primer
are available for amplification by the anchor primer. The amplified
product (a and a) provides a template for nested PCR (primer y’) to
further decrease the background.

modification of the IRE-bubble PCR technique (Mun-
roe et al., 1994). The procedure utilizes an anchored
PCR strategy (Figure 4) in which genomic DNA is
cleaved with an enzyme that does not cleave within
the Alu repeat. The modified anchor is then ligated to
the fragment ends. This anchor will only allow PCR
amplification if a primer first primes within the frag-
ment and replicates across the linker eliminating any
problems with amplification from anchor to anchor.
We take advantage of the base changes that identify the
younger Alu subfamily members (Batzer et al., 1996b;
Batzer & Deininger, 1991). In addition, this allows
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the selective enrichment for a smaller fraction of the
Alu elements from the genome, as there are only 1000
Ya5 and 1000 Yb8 Alu repeats and approximately
50 Ya8 Alu family members in the human genome
(Batzer et al., 1995). We gain the specificity for the
recent inserts by using a PCR primer that matches the
particular Alu subfamily with the diagnostic positions
at its 3’ end. Each amplification will extend from a
specific Alu subfamily member through its upstream
flanking sequences to the randomly located flanking
restriction site. The numerous older Alu repeats have
accumulated many mutations and may compete for
the PCR primers with the Ya5/8 elements. Therefore,
although the first amplification provides a great deal
of subfamily specificity, we then carry out a ‘nested’
reaction using a second allele-specific primer to im-
prove the specificity, followed by a third round with
another allele-specific primer. In theory, we can utilize
primers for each of the 5-8 diagnostic mutations in a
subfamily. _

In the example presented in this paper, we fo-
cused our attention on the identification and display
of the lower copy number Alu Ya8 subfamily. Also,
to better display the results, we used nested primers in
the upstream direction of Ya8 to avoid amplification
problems through the A-rich tail. Using the primers
described in the Materials and methods section, by
the third round of PCR, we were able to visualize
discrete DNA fragments on an agarose gel (data not
shown). The size range of these fragments appeared
to be between 150bp and 800bp. To enhance this
display, we chose an alternative method of electro-
phoretic separation and end-labeled the nested primer
to further minimize background (see below). To verify
these were Ya8 repeats, we directly cloned the third
round PCR products and sequenced them. Partial or
complete sequences of these products, using vector
primers in both directions, demonstrated all 12 clones
to be amplified by the Alu-anchor primer pair, al-
though in one case the unique linker sequence was
imprecise. All these elements contained the Ya5/8 dia-
gnostic nucleotides (There were no further upstream
diagnostics to declare these as Ya8 elements.).

For eight of the 12 isolated clones, there were
between 12 and 18 unique nucleotides between the
linker and the Alu (or truncated Alu) sequences. Since
Alu elements preferentially insert into A-T rich re-
gions (Daniels & Deininger, 1985) and Msel cuts at
the sequence TTAA, then this result is not surpris-
ing. The advantage of using Msel for the restriction
digestion is that most of the Alu-linker products are
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small enough to be amplified. Although it would be
difficult to perform nested PCR in the opposite direc-
tion with those few A-T rich nucleotides, searching
GenBank using the BLAST program with the obtained
flanking unique DNA sequences as the query may
in some cases identify the rest of the genomic se-
quence for each Alu element. This will provide the
Alu location with both its flanking sequences. Flank-
ing unique sequence primers can then be designed and
thec Alu polymorphism can then be confirmed using
other human DNA sources. Once the polymorphism
is confirmed subsequent population studies can be
performed.

Display and rapid identification of Yu8 associated
variants

To alleviate the need for testing every Ya8 element
obtained by this assay, we chose to end-label the
third round nested PCR primer to enable a display
of individual Ya8 repeats following electrophoretic
separation and autoradiography. Observed variations
may be due to primer mismatch, genomic rearrange-
ments, small insertion/deletions or Alu based inser-
tion/deletions (1/D).

We carried out the procedure with four different
individuals to discern which bands represent vari-
ants (Figure 5), and to effectively display variants as
DNA fingerprints. We obtained about 40 bands per
individual from a single reaction. Among the four
individuals analyzed, about one half of the bands ap-
peared variant (Figure 5). We have developed a potent
method for the generation of Ya8 associated DNA
fingerprints that is in reasonable agreement with the
database mining approach and secems to display the
majority of Alu subfamily members. This necessitated
addressing what proportion of the fragments generated
were the result of the presence of a Ya8 Alu element
and whether the lack of the same band in another in-
dividual represented an Alu insertion polymorphism.
We chose 12 bands to re-amplify and verify as Ya5/8
elements. Those bands that appeared variant were ana-
lyzed for Alu insertion polymorphisms. Other bands
were selected for future testing of dimorphisms as
these individual Ya8 elements may display variation
among other people/populations. Occasionally, upon
re-amplification from the isolated band, we obtained
background products and therefore, generally more
than onc clone was sequenced. Of the 12 isolated
bands (Figure 5) nine were verificd as precisely ampli-
fied HS16R-LNP products. Two others each contained

abcd

76

553

500
=

426 - — ]

413

311 ‘& —2

249 . 5
W — 14
o,
- —9
o— 4

200 e —
: b { | Direct repeat

{ | region

Figure 5. DNA fingerprints of unrelated individuals based on
anchored-Alu PCR. Individual bands are numbered for identifica-
tion purposes. Fragment lengths are shown in nucleotides to the
left. DNA samples used are of Caucasian (lane a), Hispanic (lane
b), Hindu-Indian (lane ¢) and Chincse (lane d) descent.

a Ya5/8 Alu, one randomly amplified by HS16R (anc-
8) in lieu of the linker primer, while anc-3 contained
sequences downstream of HS16R. Ancl4 apparently
was an amplified J (PS) Alu element (data not shown).
Therefore, this demonstrates the majority of the bands
visualized on the autoradiograph are AluYa5/8 repeats
and most probably Ya8. The numerous bands at about
178 nt coincide with our previous finding that many
of the products will have between 12 and 18 unique
sequences. Of the nine bands where we attempted to
obtain the opposite flank by nested anchored PCR, we
reached the opposite (downstream) flank of the Alu for




three of them (anc-5, anc-6, anc-4). In some cases the
amount of unique sequence was too small to employ
nested primers, and in some cases there was a high
level of A-T richness. In one case we merely got a non-
specific product. All three sequences obtained were
authentic Ya8 Alu elements based on the diagnostic
nucleotide positions and the high level of conserva-
tion of the sequence in relation to the consensus. This
demonstrates the successful nature of our protocol to
select for this subfamily of repeats amongst a large
background of Alu repeats.

When ‘crossing’ the anc-5 Alu by nested PCR us-
ing four individuals (not all identical to Figure 5), we
found a correspondence between the generation of a
distinct band among the individuals that also had the
anc-5 band on an autoradiograph. However, we ob-
tained a short 3’ flank of 12 nucleotides that proved
difficult in amplifying DNA from various individuals
with unique flanks. It is still possible that this variant
represents an I/D event. Besides anc-5, anc-6 also ap-
peared polymorphic on the autoradiograph, although
anc-4 did not. However, since we had both flanks, for
these Alu elements, we developed primers to rapidly
assess various individuals for an insertion variant. For
anc-6, one of a few different primer sets worked well,
yielding the band of expected size, although also gen-
erating a few non-specific bands. However, a band was
present for 11 unrelated individuals analyzed (data not
shown), including those observed on the autoradio-
graph, suggesting that the anc6 polymorphism was not
the result of an I/D variant. In addition, this band was
absent in the chimpanzee, possibly indicating the ab-
sence of the Alu or perhaps primer mismatch due to
nucleotide divergence. Although anc-4 was not vari-
ant on the autoradiograph, we tested 13 individuals of
various ethnic backgrounds for an I/D event and ob-
served it to be monomorphic. Although we have not
verified any of the displayed variants to be the result
of an Alu insertion, this potential remains, as we ob-
served Ya8 elements to be highly polymorphic, and all
the bands, but one, analyzed were Ya8 repeats.

Discussion

In this manuscript we present an analysis of the smal-
lest defined subfamily of Alu elements located within
the human genome termed Ya8. This subfamily of Alu
elements was derived from the Ya5 subfamily of Alu
elements. The Ya5 subfamily is composed of approx-
imately 1000 members and has largely integrated into

159

the human genome sometime after the human-African
ape divergence. The main reasons that supported the
more recent origin of the Ya8 subfamily are the accu-
mulation of three additional diagnostic mutations as
compared to the Ya5 subfamily and the lower copy
number for the Ya8 subfamily. It is also important to
note that a higher percentage of the Ya8 Alu family
members (50%) are polymorphic for insertion pres-
ence/absence as compared to only 25% polymorphism
in the Yb8 and Ya5 Alu subfamilies. These data also
suggest a recent origin for the Alu Ya8 subfamily
within the human genome. However, it is still possible
that the Ya8 Alu subfamily may have amplified from
an allelic variant of the Ya5S subfamily that was not as
efficient at mobilization as the Ya5 source gene.

The ability to detect a handful of Alu repeats
from the background of several hundred thousand Alu
elements in the human genome is impressive. The ap-
plication of computational biology to the analysis of
large multigene families such as Alu repeats offers
the potential to address a number of new questions
in comparative genomics as an increasing proportion
of the human genome is sequenced. Studies of the
present, as well as ancient, integration patterns of mo-
bile elements in the human genome may begin to be
addressed. In addition, the patterns of diversity gen-
erated by the integration of mobile elements into the
human genome may be analyzed at a scale that was
previously unimaginable. These types of studies will
shed new insight into the relationships between differ-
ent types of mobile elements in the human genome,
integration site preferences, impact, and the biological
properties of these elements.

The development of the ASAP technique facilit-
ated the display of a subset of Ya8 Alu elements from
alarge and complex background. The preferential isol-
ation of the young Alu elements, as demonstrated
here, enhances the identification of recent Alu inser-
tion events in the genome. We focused our efforts on
the smallest known defined subfamily of Alu repeats
to best address issues of sensitivity of the display of
individual elements. One of the advantages of this
technique is its flexibility. Altering the restriction en-
zyme used for digestion of genomic DNA selects for
distinct subsets of Alu elements within a particular
subfamily, since this technique preferentially amplifies
products that range from 200 and 800bp in size. In
addition, modifications to the ASAP technique, such
as the use of a less frequent restriction endonuclease,
may allow for a display of subsets of the larger groups
of Alu repeats such as Ya5 elements. Alternatively, the
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use of primers that select for subfamily ‘subgroups’
may also be used to reduce the complexity of the
resultant display by decreasing the number of PCR
products. Although we focused on Ya8 Alu elements
due to their low copy number, the young Yb8 Alu
subfamily is another alternative for ASAP with an es-
timated copy number of only 1000 elements (Batzer
et al., 1995; Zietkiewicz et al., 1994) and some poly-
morphic members (Hutchinson et al., 1993; Hammer
1994; Arcot et al., 1998). We have previously demon-
strated the isolation of young Alu elements (based on
sequence identity to a consensus) using a Yb8 dia-
gnostic primer, and a generic Alu as an anchor in the
amplification reaction, that can be profiled with min-
imal background (Kass, Batzer & Deininger, 1996).
It is conceivable that variations on the anchored-Alu
PCR technique can be employed to rapidly localize in-
dividual elements from all three subfamilies of young
Alu elements.

Once the flanking sequences of the young Alu
elements are obtained, the PCR strategy can be em-
ployed to trace polymorphisms that have resulted from
recent Alu insertions and are not yet fixed in hu-
man populations. The anchored-Alu PCR approach
not only facilitates rapid identification of young ele-
ments by displaying the amplification products, but
will also increase the potential for selecting only those
mobile element fossils that exhibit presence/absence
variation. Selection in this manner also shifts the spec-
trum for new elements toward the elements that are
lower frequency and less likely to be held in com-
mon between individuals or populations. Therefore,
this approach should prove to be quite useful for the
ascertainment of mobile element fossils to address
questions about more recent human diversifications. In
contrast, the identification of mobile element fossils
using computational biology affords the opportunity
to identify multiple frequency classes of Alu elements
that are shared at different geographic levels within the
human population.

The ASAP method’s strength comes from its abil-
ity to isolate a subset of interspersed repeat sequences
from different DNA sources and compare them at the
same time. In other words, this approach is not limited
to Alu elements, but may be used with other SINEs
(from other organisms) or even long interspersed ele-
ments (LINEs) or for that matter any repeated DNA
sequence family that has a defined subfamily struc-
ture. A second potential application would be the use
of ASAP to monitor genomic instability associated
with different forms of cancer by providing a multi-

locus monitoring system. Due to its high flexibility the
ASAP technique has an enormous range of potential
applications.

Mobile element fossils have proven to be simple
powerful tools for tracing the origin of human popula-
tions (Perna et al., 1992; Batzer et al., 1994a,b, 1996a;
Stoneking et al., 1997). These elements should also
prove quite useful to the forensic community as pa-
ternity identity testing reagents (Batzer & Deininger,
1991; Novick et al., 1993). Some Alu insertion poly-
morphisms have been identified by chance (Deininger
& Batzer, 1995) while others have been identified by
library screening in a directed approach (Batzer &
Deininger, 1991; Batzer et al., 1995; Arcot et al.,
1995a, b, c; Batzer et al., 1996a; Arcot et al., 1998).
Here, we have presented two complementary meth-
ods involving computational biology and PCR based
displays that will enhance our ability to identify the
genomic fossils of recently integrated mobile elements
from complex genomes. These approaches will con-
tribute to a new era in biological sciences that will
increasingly rely upon informatics/computational bio-
logy as well as hard-core bench molecular biology to
answer global questions in comparative genomics.
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Introduction

Alu elements are the most abundant Short
INterspersed Elements (SINEs), reaching a copy
number of over one million in the human gen-
ome,! making them the mobile element with the
highest copy number. Alu repeats compose
greater than 10% of the mass of the human gen-
ome. Full-length Alu elements are approximately
300 bp in length and commonly found in
introns, 3’ untranslated re%ions of genes, and
intergenic genomic regions.*”* Amplification of
Alu elements occurs through the reverse tran-
scription of RNA in a process termed retroposi-
tion.> However, Alu elements have no open
reading frames, so they are thought to parasitize
the required factors for their amplification from
Long Interspersed Elements (LINEs).®® Although
the human genome contains over one million
Alu elements, only a few Alu elements, termed
“master’” or source genes, are retroposition com-
petent®~1® The crucial factor(s) that determine an
Alu as a functional source gene are not fully
known. Several factors have been suggested to
influence the amplification process, including
transcriptional capacity, priming or self-priming
for reverse transcription and others.™*

Alu elements first appeared in the Primate gen-
omes over 65 million years (myr) ago.'! Since then,
the amplification of Alu elements within the
human genome has been punctuated, with the cur-
rent rate being at least 100-fold slower than the
initial rate of Alu expansion within primate gen-
omes.’> Throughout Alu evolution, the source
gene(s) accumulated mutations that were incorpor-
ated into the new copies made, creating new Alu
subfamilies. Therefore, the Alu family is composed
of a number of distinct subfamilies characterized
by a hierarchical series of mutations that result in a
series of subfamilies of different ages.’>~? Of these
subfamilies, almost all of the recently integrated
Alu elements within the human genome belong to
one of several closely related ““young” Alu sub-
families: Y, Ycl, Yc2, Ya5, Yab5a2, Ya8, Yb8,
and Yb9 with the majority being Ya5 and Yb8
subfamily members.®18%122

The availability of a draft human genomic
DNA sequence as a result of the Human Gen-
ome Project?® facilitates the “in silico” identifi-
cation of recently integrated Alu elements from
the human genome.!”’® This method proves to
be less demanding in comparison to older
approaches, such as cloning and library screen-
ing.*??* These recently integrated Alu elements
serve as temporal landmarks in the evolution of
our genome, and many of them will prove to be
useful in the study of human evolution and in
the study of the natural history of different
regions of the genome. Here, we present an
analysis of the human genomic diversity associ-
ated with 475 members of the Alu Ya5 and Yb8
subfamilies in the human genome.

Results

Subfamily copy number and sequence diversity

In order to determine the copy number of each
subfamily of Alu elements, we searched the draft '
sequence of the entire human genome for the pre-
sence of Alu repeats using oligonucleotide
sequences complementary to each of the subfami-
lies (outlined in the Materials and Methods). Our
query of the draft human genome sequence ident-
ified 2640 Alu Ya5 subfamily members and 1852
Alu Yb8 subfamily members. Both of these copy
numbers are in good agreement with previous esti-
mates of the sizes of these Alu subfamilies based
upon high-resolution restriction mapping and com-
putational biology.'8*!

A comparison of the nucleotide sequences of all
of the Ya5 and Yb8 Alu family members can be
found at our website (http://129.81.225.52). In
order to determine the time of origin for the
respective Ya5 and Yb8 subfamilies, we divided
the nucleotide substitutions within the elements in
each family into those that occurred in CpG dinu-
cleotides and those that occurred in non-CpG pos-
itions. The distinction between types of mutations
is made because the CpG dinucleotides mutate at a
rate that is about ten times faster than non-CpG
positions®®® as a result of the deamination of 5-
methylcytosine.?® In addition, all insertions, del-
etions and 5 truncations were excluded from our
calculations. A total of 441 non-CpG and 241 CpG
mutations occurred within the 231 Alu Ya5 sub-
family members used in this analysis. For the 244
Alu Yb8 subfamily members analyzed, a total of
478 non-CpG and 275 CpG mutations were
observed. Using a neutral rate of evolution for pri-
mate intervening DNA sequences of 0.15% per
million years?” and the non-CpG mutation density
of 0.799% (441/55,209) within the 231 Ya5 Alu
elements yields an estimated age of 5.32 million
years for the Ya5 subfamily members. Using only
non-CpG mutations in the 244 Yb8 sequences
yields an estimate of 5.30 million years old for the
Yb8 subfamily (478/60,024). This estimate of age is
somewhat higher than the 2.7-4.1 million years pre-
viously reported.?' However, the previous study of
Ya5 and Yb8 Alu family members involved only a
small number of elements making the calculated
subfamily ages more subject to random statistical
fluctuation. Alternatively, the new estimated age
based upon non-CpG mutations may be artificially
inflated due to sequencing errors in the human
draft sequence that may account for an increase in
the number of mutations observed.

We can also estimate the ages of each Alu sub-
family using CpG-based mutations. The only
difference in the estimate is to multiply the CpG
mutation density by a mutation rate that is
approximately ten times the non-CpG rate as pre-
viously described.®?® In this case we calculate an
average CpG mutation density for the Ya5 subfam-
ily (241 mutations/11088 CpG bases) or 2.17%,
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and (275 mutations/11,224 CpG bases) 2.45% for
the Yb8 subfamily. Using a neutral rate of evol-
ution for CpG based sequences of 1.5%/million
years yields estimates of 144 and 1.63 million
years old for the Ya5 and Yb8 Alu subfamilies,
respectively. Both estimates are consistent with the
initiation of the expansion of the Ya5 and Yb8 Alu
subfamilies that is roughly coincident with the
divergence of humans and African apes.

Inspection of the nucleotide sequences flanking
each Ya5 and Yb8 Alu family member shows that
most of the elements are flanked by short perfect
direct repeats. The direct repeats range in size from
3-23 nucleotides. The observed direct repeats are
fairly typical of recently integrated Alu family
members.”? The appearance of truncations within
a number of these elements probably occurred as a
result of incomplete reverse transcription or impro-
per integration into the genome rather than by
post-integration instability. All of the Ya5 and Yb8
Alu family members analyzed have oligo(dA)-rich
tails that range in length from six nucleotides to
over 60 nucleotides in length. It is also interesting
to note that the 3’ oligo(dA)-rich tails of many of
the elements have accumulated random mutations
beginning the process of the formation of simple
sequence repeats of varied sequence complexity.
The oligo(dA)-rich tails and middle A-rich regions
of Alu elements have previously been shown to
serve as nuclei for the genesis of simple sequence
repeats.?®

Alu Y to Yb8 sequence evolution

In our query of the human genome, we ident-
ified 88 Alu elements containing one to seven of
the eight Yb8 diagnostic nucleotides. These 88
““mosaic” elements were subdivided into Yb1, Yb2,
Yb4, Yb5, Yb6 and Yb7 depending on the number
of diagnostic changes present (Figure 1(a)). To
facilitate identification of the individual elements
with different diagnostic mutation combinations,
the mosaic elements were numbered consecutively
in order of abundance (Ybl.l, Ybl.2, etc, see
Figure 1(a)). No evident sequential order of
accumulation of the Yb8 diagnostic mutations can
be easily discerned. Interpretation becomes compli-
cated due to the fact that four out the eight diag-
nostic mutations are CpG changes (positions 1, 2, 4
and 6 Figure 1(a)). The Alu Y has three CpG sites
(positions 1, 2 and 6) that become TpG in Yb8, and
Alu Yb8 has one (position 4). CpG dinucleotides
mutate at a rate that is about 9.2 times faster than
non-CpG,>?* as a result of the deamination of 5-
methylcytosine.? Therefore, it is difficult to know
if the presence of a TpG diagnostic mutation is due
to a change in the Alu source gene or in the par-
ticular individual Alu element being evaluated.
Because CpG dinucleotides represent hot spots for
mutation, a high proportion of CpG positions in
the Y subfamily might have mutated to TpG. This
makes discrimination between source gene changes
and parallel forward mutations occurring in mul-

tiple Y elements at these loci difficult. Therefore,
we have eliminated these sites (positions 1, 2 and
6) from our analysis (Figure 1(b)). Position 4 rep-
resents a different situation. Because the TpG to
CpG mutation occurs at the normal evolutionary
rate, it was not eliminated from the analysis. How-
ever, some variations may be observed where indi-
vidual copies might have mutated the position
back to a TpG that need to be taken into consider-
ation. Now, a sequential evolution of the appear-

Diagnostic site
A 1 2 3 4 s 6 7 ]

Y

(0) Ybl.1

{1) Yb1.2

(2) Yb1.3

(2) Ybli.4

(3) Ybl.s

(6) Yb1.6

(7)) Yb1.7

(12) Yb1l.8

(1) Yb2.1

(1) vb2.2

(1) Yb2.3

(1) ¥b2.4

(2) Yb2.5

(3) Yb2.6

(3) Yb2.7

(1) Yb4.1:

{1) Yb4.2

{2) YbS.1

(1) Yb6.1

(4) Yb6.2

(1) Yb7.1

(6} Yb7.2 T

(12) Yb7.3 LTe.

{15) Yb7.4 T
Yb8 T

(88) total: 60 36 57 46 22 51 37 35
Y

(2) Ybl.4

(5) Yb1.2,7-4.2

(4) Yb2.1,3-1.3

(15) Yb2.6-2.8

(3) Yb4.1-5.1

{4) Yb6.2

{16) Yb6.1-7.4

(6) ¥b7.2

(13) Yb7.1,3
b8

Figure 1. Evolution of the diagnostic nucleotide pos-
itions from Y to Yb8 Alu elements. (a) Alignment of the
eight Alu Yb8 diagnostic nucleotides and the different
Ybi, 2, 3, 4, etc. elements found in the databases. The
eight diagnostic nucleotides are indicated in bold at the
top for Alu Y, and for Alu Yb8 at the bottom. At pos-
ition 8, — or d represents the absence or presence of the
seven nucleotide duplication, respectively. For easy
reference, individual elements containing different com-
binations of the diagnostic mutations were numbered
consecutively in order of abundance (Yb1.1, Ybl.2, etc.).
The total number of elements found for each subgroup
is indicated on the left in parenthesis. Note that no
Ybl.1 was found (0). The total number of the Yb8 indi-
vidual diagnostic sites found in all the intermediate
elements is indicated at the bottom. (b) Alignment of
the same elements after eliminating the diagnostic sites
in Alu Y elements involving CpG to T changes. Com-
mas separate elements within the same Yb group and
dashes between different groups, i.e. Ybl.2,7-4.2 rep-
resents Yb1.2, Ybl.7 and Yb4.2. The suggested evol-
utionary order of the occurrence of the changes at the
diagnostic sites are indicated at the bottom (#1, #2...).

Y
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ance of the diagnostic sites can be obtained, start-
ing with position 3, then 4, 7 and/or 8, and finally
position 5 (Figure 1(b)). The mutation at position 3
appears to have occurred first, being the most com-
mon single nucleotide change with 15 Yb8 mosaic
elements. The other Alu Yb8 mosaic elements with
only one diagnostic nucleotide change occur in
lower frequencies and may be explained by paral-
lel mutations, post-transcriptional selection,® or by
a forward gene conversion event. The order in
which the mutation at positions 7 and 8 (the seven
nucleotide  duplication) occurred cannot be
resolved with these data. Four of the elements
(Yb6.2 in Figure 1(b)) do not fit the proposed
sequential evolutionary pattern. In this case mul-
tiple recombination events would be required to
obtain this outcome or some selection occurring at
the retroposition process, both highly unlikely.
Alternatively, position 5 may be explained by gene
conversion events or parallel mutations. The possi-
bility of gene conversion between Alu repeats has
been suggested previously.”” In addition, limited
amounts of gene conversion between Yb8 Alu
elements?*® and extensive levels of short gene
conversions in the Ya5 subfamily’® have been pre-
viously reported.

Phylogenetic origin

In order to determine the approximate time of
origin of each Alu subfamily member (Ya5 and
Yb8) in the primate lineage, we amplified a series
of human and non-human primate DNA samples
using the polymerase chain reaction (PCR) and the
oligonucleotide primers shown in Tables 1 and 2.
In this assay, genomes that are homozygous for
the presence of an Alu element amplify a PCR pro-
duct about 400 bases in length. Genomes that do
not contain the Alu element at a particular chromo-
somal location amplify a 100 bp fragment, while
heterozygous genomes amplify both fragments.
Using this approach we investigated the phyloge-
netic origin of each Alu element. All 231 Ya5 Alu
family members were subjected to this analysis
and only one element (YaSNBC42) was present in
the orthologous locus from the common chimpan-
zee genome. For the Yb8 subfamily, 244 elements
were assayed with none being present in the com-
mon chimpanzee genome. This suggests that
almost all of these Alu elements dispersed within
the human genome sometime after the human and
African ape divergence and that less than 0.21%
(1/475) of the Ya5 and Yb8 Alu subfamily mem-
bers in the human genome also reside in non-
human primate genomes. In fact, this is only the
second Ya5 Alu element ever reported that is also
found in the genome of a non-human primate.

Human genomic diversity

In order to determine the human genomic vari-
ation associated with each of the Ya5 and Yb8 Alu
family members, each element was subjected to

PCR amplification (outlined above) on a panel of
human DNA samples. The panel was composed of
20 individuals of European origin, 20 African
Americans, 20 Greenland Natives or Asians and 20
Egyptians for a total of 80 individuals (160
chromosomes). Using this approach 134 Alu Ya5
(Table 1) and 160 Yb8 (Table 2) subfamily members
were monomorphic for the presence of the Alu
element, suggesting that these elements integrated
in the genome prior to the radiation of extant
humans. A total of 28 Ya5 and Yb8 Alu family
members appeared heterozygous in all of the indi-
viduals that were analyzed, suggesting that they
had integrated into previously undefined repeated
regions within the human genome as reported pre-
viously.3! In the PCR-based assay these elements
generate a pre-integration site size product from
the duplicate copies of the pre-integration site
located throughout the genome along with an Alu
filled site from the one pre-integration site
sequence that contains the new Alu insertion.
These elements were not subjected to any further
analysis. An additional six elements were located
in other repetitive regions of the genome that were
identified computationally and discarded from
further analysis. The remaining elements were
polymorphic for the presence of an Alu repeat
within the genomes of the test panel individuals
(Tables 3 and 4). Loci that were polymorphic for
the presence/absence of individual Alu insertions
were subsequently classified as high, low or inter-
mediate frequency insertion polymorphisms
(defined in Tables 1 and 2). The unbiased hetero-
zygosity values (corrected for small sample sizes)
for these polymorphic Alu insertions were variable,
and approached the theoretical maximum of 50 %
in several cases. This suggests that many of these
Alu insertion polymorphisms will make excellent
markers for the study of human population gen-
etics. Approximately 25% (58/231) of the ran-
domly identified Ya5 and 20 % (48/244) of the Yb8
Alu family members are polymorphic for insertion
presence/absence within the human genome.
These results are in good agreement with previous
estimates of the percentages of insertion g)oly-
morphisms within these two Alu subfamilies.?

The Alu inserts that have been in the genome
longest are more likely to approach fixation. There-
fore, we might expect to find different levels of
sequence divergence for the Alu elements from
each insertion frequency class. Using this approach
the average number of non-CpG/CpG-based
mutations for the Ya5 Alu family was 1.62/1.06,
2.83/0.67, 2.16/0.66 and 2.53/1.0 for the fixed pre-
sent, high frequency, intermediate frequency and
low frequency Alu insertion polymorphisms,
respectively. In the case of the Yb3 subfamily the
average number of non-CpG/CpG mutations was
1.86/1.16, 5.0/0.6, 22/0.66 and 1.7/1.2 for the
fixed present, high frequency, intermediate fre-
quency and low frequency Alu insertion poly-
morphisms, respectively. In all cases the standard
deviations for each average were as large or larger
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than the average number of mutations reflecting
the heterogeneity in the dataset. No detectable
difference in the mutation density within each fre-
quency class of Alu insertions was observed.
Therefore, our data suggest that any sequence
differences between the polymorphic elements and
those with fixed presence may be obscured because
of the small number of total mutations and sequen-
cing errors (see Discussion).

Discussion

Alu elements account for more than 10 % of the
mass of the human genome. The majority of Alu
elements integrated into the genome early in pri-
mate evolution. Only a small number of elements
(a few thousand) have amplified in the human
genome after the divergence of humans and Afri-
can apes. Here, we report an investigation of the
dispersion and insertion polymorphism of the two
largest subfamilies of recently integrated Alu
repeats within the human genome. Our copy num-
ber estimates of 2640 Ya5 and 1852 Yb8 Alu
elements within the draft sequence of the human
genome are in fairly good agreement with previous
estimates of the sizes of these Alu subfamilies
although they both exceed the previously pub-
lished figures.?!

Using the mutation density and a neutral
mutation rate we were able to estimate the ages of
each subfamily as 5.32 million years (myr) old for
Ya5 and 5.30 myr old for Yb8 using non-CpG-
based estimates and 1.44 myr (Ya5) and 1.71 myr
(Yb8) using the CpG mutation density. Each of
these reported average ages based upon non-CpG
mutation density is substantially higher than those
reported previously of about 1 myr and 2.7 to 4.1
myr for the Ya5 and Yb8 subfamilies, while the
estimates based upon CpG mutation density com-
pare favorably to those previously reported.”? If
we assume a linear amplification of these Alu sub-
families in the human genome, the oldest elements
would be no greater than 10.64 myr old for Ya5
and 10.6 myr old for Yb8 using non-CpG mutation
density, or 2.88 myr old for Ya5 and 3.42 myr old
for Yb8 using the CpG mutation density. The non-
CpG based estimates for the oldest subfamily
members appears to be somewhat higher than
expected for a group of repeated DNA sequences
that largely amplified within the human genome
after the divergence of humans and African apes
which is thought to have occurred within the last
4-6 myr.?” This discrepancy between the two esti-
mates can be explained by considering sequencing
errors as a potential factor influencing our current
calculations. In the determination of the non-CpG
mutations for the estimation of the Alu subfamily
age, sequencing errors would be included in the
count as mutations, making the estimated age
higher than the actual age for the subfamily. If we
assume that the sequencing errors are distributed
evenly across the entire Alu sequence, then the

number of sequencing errors would be higher in
the non-CpG-based estimates than the CpG-based
estimates, since there are more non-CpG (242-246)
than CpG (only 44-48) nucleotides in the subfamily
consensus sequences. Our observation that the
levels of sequence divergence from the subfamily
consensus sequences do not effectively correlate
with polymorphism levels in the human genome
also argues that it will not be beneficial to use
sequence divergence from the subfamily consensus
sequences as a method for the identification of
additional polymorphic members of these Alu sub-
families.

We can also compare the calculated ages of each
Alu subfamily based upon non-CpG mutation den-
sity as a whole to the estimated percentages of Alu
insertion polymorphisms and copy number to
evaluate the contribution that these elements make
to human genomic diversity. Here, we report esti-
mated ages of 1.44 myr for the Ya5 subfamily and
1.71 myr for the Yb8 subfamily. The percentage of
Alu insertion polymorphisms in each of the subfa-
milies was 25 % for the Ya5 subfamily and 20 % for
the Yb8 subfamily. The copy numbers of the two
subfamilies of Alu elements were also different
with 2640 Ya5 Alu elements and 1852 Yb8
elements. When considered together these data
indicate that the Ya5 Alu subfamily with both a
higher copy number and more insertion poly-
morphisms has been more successful at amplifica-
tion within the human genome. In fact, if we
assume that the ages of the two subfamilies are
about the same the Ya5 subfamily has been about
40% more efficient at amplification in terms of
both copy number and the generation of new Alu
insertion polymorphisms within the human gen-
ome. Although the sample size is presently small,
this is also in good agreement with the number of
previously reported Ya5 (six) and Yb8 (three) Alu
repeats associated with different human diseases
(reviewed in ref. 22). In addition, these data also
provide compelling support for the simultaneous
expansion of multiple Alu subfamilies within the
human genome. The reasons for the differential
amplification of the two Alu subfamilies remain
unknown. However, they likely reside in the abil-
ity of each subfamily to produce RNA for retropo-
sition or at some other point in the process of
retroposition itself such as the reverse transcription
step. Further experiments will be required to deter-
mine the precise molecular mechanism(s) leading
to the differential expansion of these two Alu sub-
families within the human genome.

Using the non-CpG-based average ages of the
Ya5 and Yb8 Alu subfamilies along with a linear
amplification rate we can also estimate the number
of members from each Alu subfamily that should
be present within the orthologous loci of the non-
human primate genomes. Using this approach the
oldest Alu repeats from each subfamily would be
approximately twice the average age. In other
words, the Ya5 subfamily would have begun to
expand 10.64 myr ago with the Yb8 subfamily hav-
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ing expanded about 10.6 myr ago. If we assume
that humans and African apes diverged from each
other only 4 myr ago, then we can calculate that
6.64/10.64 (62%) and 6.6/10.6 (62%) of the Ya5
and Yb8 Alu elements should also be found at
orthologous positions within the genomes of non-
human primates. If we shift the divergence of
humans and African apes to 6 million years ago
then the estimates change to 4.64/10.64 (44 %) and
4.6/10.6 (43 %). However, less than 0.21% of the
elements were also located in orthologous pos-
itions in the genome of the common chimpanzee.
The observed distribution of Ya5 and Yb8 Alu
repeats located within the common chimpanzee
genome would require a human and non-human
primate divergence of greater than 10 myr ago.
This is clearly a much older divergence time than
is commonly accepted.

Three potential explanations may account for
this. One is the selective removal of Alu elements
from orthologous positions in non-human primate
genomes effectively resulting in an ascertainment
bias against elements in the non-human primate
genomes because our elements were obtained by
scanning a database of human genomic sequences.
However, we consider this to be highly unlikely,
because there are no known mechanisms to specifi-
cally remove Alu elements from primate genomes
and even when an element is partially deleted
from the genome it leaves behind a signature of
itself.>* A second and more likely explanation is
that the amplification rate for these subfamilies has
increased recently in the human lineage. Alterna-
tively, the higher average ages for each of the Alu
subfamilies than those previously reported may
reflect a higher sequencing error rate in the gen-
ome database, resulting in an inflated age estimate
for the Alu subfamilies. The estimated ages of the
subfamilies are also inflated by the faster accumu-
lation of non-CpG based mutations (as a result of
the larger number of potential target sites) as com-
pared to CpG nucleotides. Therefore, the use of the
CpG-based mutation density for Alu subfamily age
estimates will be much more accurate than the use
of non-CpG mutation density-based estimates
using the current draft sequence of the human gen-
ome. The magnitude of the putative sequencing
errors can be estimated by comparing the pre-
viously reported non-CpG mutation density
for these Alu subfamilies of approximately 0.4 %
for the Ya5 and Yb8 Alu elements to the levels
reported here of approximately 0.8% for the
same subfamilies. Therefore, the maximum
possible error rate would be estimated as
08% —04% =04%. In our data analysis, there
are a few Alu elements with much higher mutation
densities than previously seen. We are not sure
whether these represent a small number of auth-
entic, highly divergent subfamily members
(approximately 10% divergence), or the concen-
tration of sequence errors in a few elements. Thus,
other than the possibility of a few areas where
errors may be concentrated, there is a relatively

low sequencing error rate across the entire data-
base, demonstrating the reliability of the draft
human genomic sequence. Large scale re-sequen-
cing of the Alu elements characterized in this
paper would resolve this issue and allow for an
accurate estimate of sequencing error rates within
the draft human genomic sequence; it would also
provide a refined estimation of the average age of
the Alu Ya5 and Yb8 subfamilies as well.

SINE retroposition is the primary mode of
mobilization of Alu elements, where mutations in
the source gene(s) create their sequence evolution.
However, previously we reported that gene
conversion and genetic instability might have also
significantly impacted the Alu sequence architec-
ture.’® Our analysis of the Yb8 mosaic elements
also suggests that gene conversion may have influ-
enced the evolution of the Yb8 Alu subfamily.
Among the alternative explanations for the occur-
rence of mosaic elements, multiple parallel
mutations seems unlikely; unless there was selec-
tion for these specific mutations, such as the post-
transcriptional ~ selection previously proposed.®
However, a selection process that would only
select for these specific mutations would be
improbable. Recombination may have generated
some of these mosaic elements, but multiple
recombination events would be required, making it
unlikely. Therefore, we believe gene conversion to
be the most likely explanation for the existence of
the mosaic Alu elements.

Our analysis of the human genomic diversity
associated with the Ya5 and Yb8 Alu elements
reported here resulted in the recovery of 106 new
Alu insertion polymorphisms. The percentages of
Alu insertion polymorphisms recovered from each
subfamily were 25% and 20 % for the Ya5 and Yb8
subfamilies, respectively. The percentages of Alu
insertion polymorphisms in these two subfamilies
are in good agreement with previously published
insertion polymorphism estimates for these Alu
subfamilies.?’ We can also estimate the total num-
ber of Alu insertion polymorphisms within the
draft sequence of the human genome using our
copy number estimates and the percentage of Alu
insertion polymorphisms associated with each
family. Using this approach we should recover
2640 x 0.25 or about 660 Ya5 Alu insertion poly-
morphisms and 1852 x 0.20 or about 370 Yb8 Alu
insertion polymorphisms through the exhaustive
analysis of the draft sequence of the human gen-
ome. Therefore, the exhaustive analysis of the
entire Ya5 and Yb8 Alu subfamilies from the draft
sequence of the human genome should generate a
little more than 1000 Alu insertion polymorphisms
from these subfamilies.

Additional Alu insertion polymorphisms that are
present in diverse human genomes may also be
recovered using PCR based display approaches
such as those previously reported for Alu and
LINE elements.!”? Each of the Alu insertion poly-
morphisms in the genome is a temporal genomic
fossil that is identical by descent with a known
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ancestral state.?>3¢ Previously, the analysis of Alu
insertion polymorphisms has proved useful for the
study of human population genetics®*~* The
newly identified Alu insertion polymorphisms
from the Ya5 and Yb8 Alu subfamilies should
prove useful for the study of human population
genetics.

Materials and Methods

Cell lines and DNA samples

The cell lines used to isolate primate DNA samples
were as follows: human (Homo sapiens), HeLa (ATCC
CCL2); and chimpanzee (Pan troglodytes), Wes (ATCC
CRL1609). Cell lines were maintained as directed by the
source and DNA isolations were performed using
Wizard genomic DNA purification (Promega). Human
DNA samples from the European, African American,
Asian, Egyptian, and Greenland Native population
groups were isolated from peripheral blood lympho-
cytes* available from previous studies.’™

Computational analyses

Initial screening of the GenBank non-redundant and
high throughput genomic sequence (HTGS) databases
was performed using the Basic Local Alignment Search
Tool (BLAST)*® available from the National Center
for Biotechnology Information  (http://www.ncbi.
nlm.nih.gov/). Copy number estimates were determined
using Meéablast and the draft human genome sequence
database.** The database was searched for exact
complements to the oligonucleotide 5-CCATCCC-
GGCTAAAAC-3 and 5-TGCGCCACTGCAGTCCG-
CAGTCCG-3' that are exact matches to a portion of the
Alu Ya5 and Yb8 subfamily consensus sequences
(respectively) that contain unique diagnostic mutations.?*
Sequences that were exact complements to the oligonu-
cleotides were then subjected to more detailed annota-
tion. A region composed of 500-1000 bases of flanking
DNA sequence directly adjacent to the sequences ident-
ified from the databases that matched the initial
GenBank BLAST query were subjected to annotation
using the RepeatMasker2 program from the University
of Washington Genome Center server (http://ftp.
genome.washington.edu/c/s.dll/RepeatMasker) or Cen-
sor from the Genetic Information Research Institute
(http:/ /www.girinst.org/Censor_Server-Data_Entry_
Forms.html).*” These programs annotate the repeat
sequence content of individual sequences from humans
and rodents. A complete list of the Alu elements ident-
ified from the GenBank search is available from MAB.
The copy numbers for each subfamily of Alu elements
were determined by screening the draft sequence of the
entire human genome with the oligonucleotides shown
above.? For the Yb8 subfamily analysis, the database
was searched for matches to the consensus Yb8 sequence
without the seven-nucleotide duplication (287 bases).
The sequences were then subjected to more detailed
analysis using MegAlign (DNAStar version 3.1.7 for
Windows 3.2) selecting only for Yb8 intermediate
elements containing between one and seven of the Yb8
diagnostic sites.

Primer design and PCR amplification

PCR primers were designed from flanking unique
DNA sequences adjacent to individual Ya5 and Yb8 Alu
elements using the Primer3 software (Whitehead Insti-
tute for Biomedical Research, Cambridge, MA, USA)
(http:/ /www .genome.wi.mit.edu/cgi-bin/ primer/pri-
mer3_www.cgi). The resultant PCR primers were
screened against the GenBank non-redundant database
for the presence of repetitive elements using the BLAST
program, and primers that resided within known repeti-
tive elements were discarded and new primers were
designed. PCR amplification was carried out in 25 pl
reactions using 50-100 ng of target DNA, 40 pM of each
oligonucleotide primer, 200 pM dNTPs in 50 mM KCl,
1.5 mM MgCl, 10 mM Tris-HCl (pH 8.4) and Tag®
DNA polymerase (1.25 units) as recommended by the
supplier (Life Technologies). Each sample was subjected
to the following amplification cycle: an initial denatura-
tion of 150 seconds at 94 °C, one minute of denaturation
at 94°C, one minute at the annealing temperature, one
minute of extension at 72°C, repeated for 32 cycles, fol-
lowed by a final extension at 72°C for ten minutes. For
analysis, 20 pl of each sample was fractionated on a 2%
agarose gel with 0.25 pg/ml ethidium bromide. PCR
products were directly visualized using UV fluorescence.
The sequences of the oligonucleotide primers, annealing
temperatures, PCR product sizes and chromosomal
locations for all Ya5 and Yb8 elements can be found on
our website (http://129.81.225.52). Phylogenetic analysis
of all the ascertained Alu elements was determined by
PCR amplification of human and non-human primate
DNA samples. The human genomic diversity associated
with each Alu element was determined by the amplifica-
tion of 20 individuals from each of four populations
(African-American, Greenland Native or Asian, Euro-
pean and Egyptian) (160 total chromosomes). The chro-
mosomal location of Alu repeats identified from clones
that had not been previously mapped was determined
by PCR amplification of National Institute of General
Medical Sciences (NIGMS) human/rodent somatic cell
hybrid mapping panel 2 (Coriell Institute for Medical
Research, Camden, NJ).
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ABSTRACT .

Genomic database mining has been a very useful aid in the identification and retrieval of recently
integrated Alu elements from the human genome. We analyzed Alu elements retrieved from the GenBank
database and identified two new Alu subfamilies, Alu Yb9 and Alu Yc2, and further characterized Ycl
subfamily members. Some members of each of the three subfamilies have inserted in the human genome
so recently that about a one-third of the analyzed elements are polymorphic for the presence/absence
of the Alu repeat in diverse human populations. These newly identified Alu insertion polymorphisms will
serve as identical-by-descent genetic markers for the study of human evolution and forensics. Three

previously classified Alu Y elements linked with disease belong to the Ycl subfamily, supporting the
retroposition potential of this subfamily and demonstrating that the Alu Y subfamily currently has a very

low amplification rate in the human genome.

ALU elements have been accumulating in the human
genome throughout primate evolution, reaching
a copy number of over a million per genome. However,
most of these Alu copies are not identical and can be
classified into several subfamilies (reviewed in DEeI-
NINGER and BATzER 1993). These different subfamilies
of Alu elements were generated once mutations oc-
curred within the “master” or “source” gene that actively
retroposed atdifferent rates and time periods of primate
evolution (DEININGER e al. 1992). Currently, the Alu
retroposition rate is reduced by 100-fold from its peak
early in primate evolution (SHEN et al. 1991). The vast
majority of the Alu elements present in the human
genome inserted before the radiation of extant humans
and are therefore observed in all individuals in the hu-
man population. However, almost all of the recently
integrated Alu elements in the human genome are re-
stricted to several closely related “young” subfamilies,
with the majority being Ya5 and Yb8 subfamily members
(BATZER et al 1994, 1995). Several of these new subfami-
lies appear to originate from an Alu element that fortu-
itously inserted into a favorable region of the genome
capable of supporting Alu retroposition. Subsequent
or concurrent mutations in the new source element(s)
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result in groups of elements that are identifiable as new
subfamilies. '

Collectively, the Alu Y, Ya5, Ya5a2, Ya8, and Yb8 sub-
families comprise <10% of the Alu elements present
within the human genome, with the Ya5/8 and Yb8
subfamilies together accounting for <0.5% of all Alu
elements. Although the human genome contains
>1,000,000 copies of Alu (~15% of the genome; SMIT

- 1996), <0.5% are polymorphic. Due to their recent

evolutionary introduction into the human genome,
many of the young Alu elements are polymorphic be-
tween individuals and/or populations. There is an in-
verse correlation between the age of the Alu subfamily
and the percentage of polymorphic elements it con-
tains. Identification of evolutionarily recent Alu sub-
families and their polymorphic insertions is useful for
human population studies, forensics, and DNA finger-
printing for two reasons: (i) There is no apparent spe-
cific mechanism to remove newly inserted Alu repeats,
making inserts identical by descent; and (ii) the Alu
insertions have a known ancestral state (BATZER and
DEININGER 1991; BATZER et al. 1994).

The availability of large quantities of human genomic
DNA sequence provided by the Human Genome Project
facilitates genomic database mining for recendy inte-
grated Alu elements. Through this approach we were
able to identify the youngest Alu subfamily reported to
date, termed (Ya5a2), and determined that the majority
of its members are Alu insertion polymorphisms (Roy
et al. 2000). We expanded our computational analyses
to identify other Alu subfamilies derived from the Alu



Y and Yb8 subfamilies. Here, we present the analysis of
three of the most recently formed Alu subfamilies and
demonstrate their utility for the study of human geno-
mic diversity.

MATERIALS AND METHODS

Computational analyses: Sequence alignments for the iden-
tification of Alu subfamilies were made using MegAlign soft-
ware (DNAStar version 3.1.7 for Windows 3.2). Screening of
the GenBank nonredundant (nr), the high throughput ge-
nome sequence (htgs), and the genomic survey sequence (gss)
databascs was performed using the advanced basic local align-
ment scarch tool 2.0 (BLAST; ALtscHUL et al. 1990) available
{from the National Center for Biotechnology Information
(http:/www.ncbi.nlm.nih.gov/). Database searches for Yb8
consensus Alus showed a common single-base variant termed
Yb9. The databases were searched for matches to the 289 bases
of the Yb9 consensus sequence (as inferred from the previous
Yb8 analysis) or the 281 bases of the Alu Y consensus with
the expected value (real) set at —¢ 1.0¢7' and —¢ 1.0¢710,
respectively, in the advanced BLAST options. Only Alu Yb9
elements with all nine diagnostic mutations were selected. A
similar type of search procedure was performed with the Ycl
and Yc2 consensus sequences or with an oligonucleotide query
sequence complementary to the subfamily diagnostic base po-
sitions. Only Alu Yc1/Yc2 elements with 100% identity to the
oligonucleotide query sequences or entire sublamily-specific
consensus sequnce were utilized for further analysis. To esti-
mate the copy numbers of the Yb9 subfamily we searched the
draft sequence of the human genome (LANDER et al, 2001),
using a subfamily-specific probe that contained the Yb9-spe-
cific mutation as well as the insertion in the Yb8 subfamily. A
complete list of the Alu elements identified from the GenBank
search is available from M. A. Batzer or P. L. Deininger.

DNA samples: Human DNA samples from the European,
African-American, Alaskan Native, Egyptian, and Asian popu-
lation groups were isolated from peripheral blood lympho-
cytes (AUSUBEL el al. 1996) that were available from previous
studies (Roy et al. 1999).

Oligonucleotide primer design and PCR amplification:
Flanking unique DNA sequences adjacent to each Alu repeat
were used to design primers for the Yb9, Ycl, and Yc2 Alu
elements (Table 1). PCR primers and reactions were per-
formed as previously described (Rov et al. 1999). The heterozy-
gosity associated with each element was determined by the
amplification of 20 individuals from each of four populations
(African American, Alaskan Native, or Asian, European, and
Egyptian; 160 total chromosomes). The chromosomal location
for elements identified from randomly sequenced anonymous
large-insert clones was determined by PCR as previously de-
scribed (Rovy ef al. 1999).

RESULTS

The Alu Yb9, Ycl, and Yc2 subfamilies: Analysis of a
set of 243Yb8 Alu elements retrieved from the GenBank
database allowed us to identify a putative subfamily con-
taining all the known Yb8 diagnostic mutations plus one
new mutation, which is referred to as Yb9 in compliance
with the standard Alu subfamily nomenclature (BATZER
et al. 1996). The Yb9 consensus sequence is shown in
Figure 1. Searches from the nr, the htgs, and gss re-
trieved a total of 56 Yb9 elements. Of these, 25 elements

) 2 A. M. Roy-Engel et al.
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were retrieved from the nr database (30.4% of the hu-
man genome at the time), giving an estimated size of
82 members for the Yb9 subfamily. This estimate is also
in good agreement with a search of the draft human
genomic sequence (LANDER et al. 2001) that identified
79 perfect matches with a Yb9 subfamily-specific query
sequence. ,

Using a different approach, we also retrieved one
previously identified subfamily, Ycl [formerly termed
Sb0 (Jurka 1995)], and a new variant, Yc2. GenBank
database searches for Alu Y elements that perfectly
match the consensus sequence brought several Alu Y
elements to our attention that share one or two specific
mutations that differ from the Y consensus. Closer in-
spection facilitated the retrieval of the additional Alu
subfamilies. BLAST searches using the consensus se-
quence for Alu Ycl and Yc2 will also retrieve a large
number of elements that are matches to the Alu Y sub-
family as well, making the analysis of the elements identi-
fied in this manner impractical. Therefore, we selected
only the elements of these subfamilies with 100% iden-
tity to the oligonucleotide query sequence that con-
tained the subfamily-specific diagnostic bases. A total of
176 Ycl (18 perfect matches to the entire subfamily
consensus sequence) and 17 Yc2 (11 perfect matches
to the entire subfamily consensus sequence) elements
were retrieved. A count of all Ycl elements retrieved by
BLAST on a single initial search of the nr database
yielded a total of 116 elements, giving an estimated copy
number of 381 Yc1 elements in the human genome (the
nr database contained 30.4% of the human genome'
sequence at the time of the search). Interestingly, three
of the four elements previously classified as Alu Y ele-
ments linked to disease (DEININGER and BATZER 1999)
belong to the Alu Ycl subfamily (Figure2): the de novo
insertion in the CI inhibitor gene (Clinh; Stoppa-
LYONNET et al. 1990), another de novo insertion in
BRCA2 (BRCA2; MIKI et al. 1996), and glycerol kinase
deficiency (GK; ZHANG et al. 2000).

About one-half of the 56 total Yb9 elements (29)
shared 100% nucleotide identity with the subfamily con-
sensus sequence. To get an approximation of the age
of the Yb9 subfamily, we evaluated the number of non-
CpG mutations present within the different Alu ele-
ments as previously described (Roy et al. 2000). A total
of 19 CpG mutations, 25 non-CpG mutations, and two
5" truncations occurred within the 56 Alu Yb9 subfamily
members identified. Using a neutral rate of evolution
for primate intervening DNA sequences of 0.15% per
million years (M1YAMOTO et al. 1987) and the non-CpG
mutation density of 0.1908% (25/13,104 bases using
only non-CpG bases) within the 56 Yb9 Alu elements
yield an estimated average age of 1.27 million years
(myr). The age for the Yb9 subfamily members is pre-
dicted ata 95% confidence level in the range of 0.8-1.8
myr, given that the mutations were random and fit a
binomial distribution. No analysis can be made for the
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. . 4 - . . . otide substitutions at each

Y AAATACAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAGCTACTCGGGAGS 180 position are indicated with
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YbS e ettt it ittt arenaenanns g...... 180 Deletions are marked by

' dashes (-). The Yb8 and Yb9

. . -5 - . 6 . diagnostic nucleotides are

Y CTGAGGCAGGAGAATGGCETGAACCCGGGAGGCGGAGCTTGCAGT 'GAGCCGAGATCGCGC 240 indicated in boldface type

B 4 < A.. AR IR YRR T.... 240 with the corrcsponding di-

B 223 IR O T.... 240 agnostic numbers above.

7. 8 . . .

Y CACTGCACTCCA~~=mve- GCCTGGGCGACAGRGCGAGACTCCGTCTC 281

¥Yb8  ....... (S FENI 107 Ve o o ¢ 288

Ybs  ......, G eGCAGTCCG. o v veieeennnnn et enenn 288

Ycl and Yc2 Alu elements, because only subfamily mem-
bers with perfect identity to the subfamily consensus
sequence or one mismatch were isolated from the data-
base using one of the database screening procedures.

Phylogenetic distribution and human genomic diver-
sity of the new subfamilies: Amplification of the Yb9,
Ycl, and Yc2 elements from nonhuman primate ge-
nomes facilitated the analysis of the phylogenetic distri-
bution of these elements, using PCR and the oligonucle-
otide primers in Table 1. The majority of the elements
evaluated were absent from the genomes of the nonhu-
man primates, suggesting that these elements dispersed
and were fixed in the human genome after the human
and African ape divergence.

We performed a PCR analysis on a panel of human
DNA samples to determine the levels of human diversity
associated with the Alu elements from these new subfam-
ilies, using the oligonucleotide primers shown in Table
1. The panel consists of 20 individuals of European
origin, African-Americans, Asians, and Egyptians for a
total of 80 individuals (160 chromosomes). We were
able to analyze 28 out of the 56 Yb9 elements, 97 out
of 176 Yc1 elements, and 8 out of 17 Yc2 Alu elements,
using this approach. Several factors did not allow for
analysis of all the elements. Mainly, we were unable to
design appropriate primers due to insufficient flanking
unique DNA sequences or because the element ana-
lyzed resided within another type of repeat as described
previously (BATZER et al. 1991). The Alu elements were
classified as fixed present and high, intermediate, or
low frequency insertion polymorphisms (see Table 1 for
definitions). In general, we observed that approximately
one-fourth to one-third of the elements analyzed had
some degree of insertion polymorphism (Yb9 with 10/

28, Ycl with 24/97, and Yc2 with 3/8). The population-
specific genotypes and levels of heterozygosity for each
element are shown in Table 2. The high proportion of
polymorphic elements in these Alu subfamilies is in
good agreement with our previous observations, indicat-
ing that these subfamilies are very recent in origin and
still actively retroposing within the human genome.

DISCUSSION

From our subset of AluYb8 and Y elements, we were
able to retrieve three Alu subfamilies termed Yb9, Ycl,
and Yc2. A schematic of the evolutionary relationship
of these subfamilies with the previously defined Alu
subfamilies is shown in Figure 3. Alu subfamilies arise
as a result of mutations occurring in an existing master
element or new source elements capable of significant
amplification. In this case, the new subfamilies are pre-
sumably examples of Alu subfamilies that may have origi-
nated from the rare instances when an Alu element
fortuitously becomes both transcriptionally and retropo-
sitionally active, therefore allowing it to be another Alu
source gene.

The young Alu subfamilies are currently active with
respect to retroposition, whereas the older Alu subfamil-
ies typically are not. The old Alu subfamilies (Sx, L
and Sgl), which comprise the vast majority (>1,000,000
copies) of the Alu elements present in the human ge-
nome, appear completely inactive as none of their mem-
bers have been associated with de novo Alu inserts that
result in human diseases (Table 3). When noting the
ratio of reported Alu insertions associated with diseases
and the estimated size of the Alu subfamily, the younger



-— -

Ty A. M. Roy-Engel et al.

Y GGC(‘{GGGCGCGGTGGC'I‘CACGCCTGTAATCCCAGCRC‘I"I‘TGGGAGGCCGAGGCGGGCGGA 60
Yecl e ettt e e @ et ettt et e 60
b= 2D 60
Clinh ... ... i i i St eesosanceattaassnsrencsassesacns 60
BRCAZ ...... s e et tae et e ettt e s et aas e e e .an 60
GK  mmmmmmmmmmmem el B et I R Y
. : ’ 2. v ‘ Ficure 2.—Consensus se-
Y TCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACACGGTGARACCCCGTCTCTACTAA 120 quence alignm entof Y, Yel,
Yel  .......... ® @t e 4 600 s s a2t e e e anseccecs teesesessesrsnccse 120 Yc2,andthreeAlchlele-
Yc2 R L A...o-.--—-..--...-.-oa 120 ments aSSOCia[cd wi[h diS’
Clink ..... c et wa Ce et esess et nansseenus Tiveeeooetnsocsasne eraee 120 ease. The discases linked
BRCA2 .......... eesse et e vt cean ‘.T .......... Ciseveeescsssannssesnse 120 withYel Alu elements are
GK S et et e v et et e S ss s aassaa teccaccsvessoonssan 120 theangiocdemacausedby
1 a de novo insertion in the
* : ‘ ‘ : i 1 inhibitor gene (Clinh;
Y AAA- -~~~ TACAAAAAATTAGCCGGGCGTGGTGGCGGGCECCTGTAGTCCCAGCTACTCG 175 SC'I‘OPI; A-LYONN%II‘ dag. 1990)'
Yecl evemmm-— beetesoana e J “iiseeennaase 175 breast cancer with another
Yc2 P emmmma R R R Al ittt ntannanes s s «ee 175 de novo insertion in BRCA2
Cliaoh 4o eBARAA . vttt vnoreeracenranaenns - .. 180 (BRCA2; MIkI et al, 1996),
BRCA2 ...-===- cetteeeeeaiirie e F e * 175 2nd glycerol kinase deof
GK teemmm——, eesto ettt iosnn ..‘.......A. ..... R R T T . 175 cicncy (GK, ZHANG ¢ al.
2000). Nucleotide substitu-
Y GGAGGCTGAGGCAGGAGAATGGCETGAACCCAGAAGGCCGAGCTTGCAGTGAGCCGAGAT 235 ;%‘:zaf; d"‘ﬁ*&f:ﬁf‘;’;p“’r’;
Ycl I et e et et et ae ettt et tee et ersassancssane ggg priate nucleotide. Deletions
Yc? Peos i esasanecrantecnennsens R Cc;- setssaacenn o are marked by dashes ).
Clinh ............... L T ceres e The diagnostic nucleotides
BRORZ2 ..ttt nenceinnnenennnnn s e atlsasntssannnnen Pttt et et 235 are indicated in boldface
GK teet et e svansana L SE® PN sammrrs s anarr. Cevesnscaas 235 typewiththecorresponding
diagnostic numbers above.
Y CGCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTCTC 281
Yel i e C et e et it aae .. tlesesosane 281
B = S ve.. 281
L6 3 286
BROAZ i ittt e et e, 281
A 281

subfamilies Ya5, Yb8, and Ycl currently appear to be
~1000 times more active than the Alu'Y subfamily with
7/2640, 3/1852, and 3/400 compared to 1/200,000 (Ta-
ble 3). The Alu Ya5a2 subfamily appears to have even
a higher current retroposition rate (1/40), but the very
young age and small size of the subfamily may be an
influencing factor. In general, two independent obser-
vations support the current mobility of these young Alu
subfamilies within the human genome. First, there are
examples of Alu inserts that have caused disease that
belong to these young subfamilies. Second, the subfami-
lies have a high proportion of Alu insertion polymor-
phisms between individuals/populations (Table 8), in-
dicating the recent proliferative/amplification activity
of these Alu elements in the human genome.

Alu elements that are polymorphic for insertion pres-
ence/absence have previously proven useful for the
study of human population genetics and forensics
(BaTzER etal 1991, 1994; PERNA et al. 1992; Novick et al.
1993; HAMMER 1994; TISHKOFF ef al. 1996; STONEKING et
al. 1997; MAJUMDER et al. 1999; Comas et al. 2000; JorDE
et al. 2000; WATKINS et al. 2001). The identification of

very young Alu subfamilies with a high proportion of
polymorphic members provides new sources of Alu in-
sertion polymorphisms for the study of human popula-
tion genetics. However, it is important to note that an
exhaustive analysis of these small subfamilies will only
generate a relatively small number of new Alu insertion
polymorphisms. '

Master element vs. source gene: Alu elements have
been proposed to fit an evolutionary model where the
copies arose from “master” genes (DEININGER and SLa-
GEL 1988; LABUDA and STRIKER 1989; SHEN et al. 1991;
DEININGER et al. 1992). A master gene can be defined
as an element that is highly active during a long period,
therefore generating a lot of copies of itself. However,
we demonstrated that recently inserted Alu elements
(de novo) belong to a variety of Alu subfamilies, indicat-
ing the simultaneous presence of multiple active ele-
ments in the human genome. These active elements
that have a low rate of amplification and are only active
for a very short period of time should not be classified
as master genes. To distinguish between them, we sug-
gest the use of the nomenclature of “master gene” when

s
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(Continued)

~

Egyptian

European

Asian/Alaska native

African American

Avg
het!

Genotypes

Genotypes

Genotypes

Genotypes

fAlu  Het"

__/__

~/= JAlu Het' +/+ +/- —/- fAl  Het' +/+ +/— -/ fAlu  Het' +/+ +/—

+/4 /-

Elements

1.000 0.000 0.026
1.000 0.000 0.065
0.000 0.000 0.000

0
0
20
0

1

0

1

16
15

0.947 0.102

0
0

2
20

17
18

1.000 0.000
1.000 0.000
0.000 0.000

0
0

20
11

17

1.000 0.000

0.850 0.262

0
2

20

20

Yc1RG101
YclRG103
YcIRGI23
YcIRGI125
Yc2NBC1

1.000 0.000
0.000 0.000

0.425 0.501

16

0
0
10
18
14

0
0
18

17

0
0
3
3
18

0.000 0.000

0
0
1
3
15

0.500 0.514 0.466

0.821

3
0
0
3

17

0.225 0.858
0.429 0.027
0.400 0.031

0.400 0.492

4
3
4
0

16

0.093 0.061

0.964 0.065

5

1

0

0.375 0.061
0.471

0.049

0.882 0.085

0.925 0.071
0.600

10

0.010

10

Yc2NBC5H

0.047

0.842 0.081

0.03

10

7

1.000 0.000

0.917 0.077

Yc2NBC19

Zygosity.

" This is the unbiased hetero

* Average heterozy
Elements in italics

A. M. Roy-Engel et al.

pulation heterozygosity.
were screened using DNA collected from Alaska natives rather than from the Asian population,

gosity is the average of the po
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7
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FIGURE 3.—Schematic diagram of the evolution of recently
integrated Alu subfamilies. All the origins of the young Alu
subfamilies are shown. The origins of the Yb9, Ycl, and Yc2
Alu subfamilies are shown after the divergence of the Yb8 and
the Y subfamily, respectively. The size of the font is relative
to the number of elements within each subfamily, the largest
representing 100,000-200,000 copies; medium, 1000-2000
copies; and the smallest, 50-500 copies. The total number of
elements from each subfamily linked to disease is indicated
to the right. The proportion of polymorphic elements within
each family is represented by the following: %, rarely polymor-
phic elements are found; +, low percentage of polymorphic
elements; ++, ~50% the elements are polymorphic; and
*++-+, most of the elements are polymorphic.

referring to the highly active genes for long evolutionary
periods of time, like the Alu element that generated
the majority (>90%) of the Alu elements currently pres-
entin the genome today. For those copies, or daughters,
that acquired the ability to retropose we propose the
use of the term “source genes.” However, some of the
elements classified as source genes may be potential
master genes, and only the progression of time will allow
the appropriate distinction to be made.

Evolutionary reduction in the Alu retroposition rate:
Our data indicate the existence of several currently ac-
tve Alu elements that belong to different subfamilies
within the human genome. However, the present ampli-
fication rate of Alu elements has drastically decreased
from when it reached its peak 35 and 60 million years
ago (mostly Sx subfamily). The majority of the Alu ele-
ments presentin the genome of extant humans inserted
during this peak amplification period. There are multi-
ple reasons that could explain the reduction in the
amplification rate’ of Alu elements. First, mutations
within or near the master Alu element could reduce its
retroposition activity or even totally abolish it by a variety
of mechanisms (DEININGER and BATZER 1993; ScuMip
1996). Altemativcly, mutations within the master gene
orin the LINE elements that affect the ability to “parasit-
ize" LINE element-encoded enzymes necessary for retro-
position could also reduce the Alu amplification rate.
Furthermore, the host may have also evolved cellular
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TABLE 3

Young Alu ;ubfamﬂies copy number, inserts linked to disease,
and polymorphism

Inserted General
linked subfamily

Alu Estimated with polymorphism*
subfamily copy number disease” (%)
J, Sx, Sgl >1,000,000 0 —
Y >200,000 1 +
Yab 2640 7 + 26
Ya5a2 40 1 +++ 80°
Ya8 70 0 ++ 50
Yb8 1852 3 + 20
Yb9 80 0 + 36
Ycl 400 3 + 25°
Yc2 ND 0 + 37.5¢

ND, not determined.

“ Previously published Alu elements linked with disease
(DEININGER and BATzER 1999).

* The proportion of polymorphic elements within each fam-
ily is represented by the following: *, rarely polymorphic
elements are found; +, low percentage of polymorphic ele-
ments; ++, ~50% the elements are polymorphic; and +++,
most of the elements are polymorphic.

‘ Percentage polymorphism was determined using a selected
subgroup introducing a bias.

mechanisms to reduce Alu proliferation. Finally, the
availability of suitable genomic “insertion sites” may be
reduced, since most evolutionarily neutral or positive
sites are presumably already “filled” with different types
of preexisting repeats. Alternatively, new Alu insertions
may result in unacceptable local levels of unequal homo-
logous recombination (DEININGER and BaTzer 1999).
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